Your browser doesn't support javascript.
loading
Supervised perceptron learning vs unsupervised Hebbian unlearning: Approaching optimal memory retrieval in Hopfield-like networks.
Benedetti, Marco; Ventura, Enrico; Marinari, Enzo; Ruocco, Giancarlo; Zamponi, Francesco.
Afiliação
  • Benedetti M; Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy.
  • Ventura E; Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy.
  • Marinari E; Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy.
  • Ruocco G; Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro 2, 00185 Roma, Italy.
  • Zamponi F; Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France.
J Chem Phys ; 156(10): 104107, 2022 Mar 14.
Article em En | MEDLINE | ID: mdl-35291790
The Hebbian unlearning algorithm, i.e., an unsupervised local procedure used to improve the retrieval properties in Hopfield-like neural networks, is numerically compared to a supervised algorithm to train a linear symmetric perceptron. We analyze the stability of the stored memories: basins of attraction obtained by the Hebbian unlearning technique are found to be comparable in size to those obtained in the symmetric perceptron, while the two algorithms are found to converge in the same region of Gardner's space of interactions, having followed similar learning paths. A geometric interpretation of Hebbian unlearning is proposed to explain its optimal performances. Because the Hopfield model is also a prototypical model of the disordered magnetic system, it might be possible to translate our results to other models of interest for memory storage in materials.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article