Your browser doesn't support javascript.
loading
Lifetime elongation of quantum-dot light-emitting diodes by inhibiting the degradation of hole transport layer.
Lin, Bo-Yen; Ding, Wen-Chen; Chen, Chia-Hsun; Kuo, Ya-Pei; Lee, Jiun-Haw; Lee, Chun-Yu; Chiu, Tien-Lung.
Afiliação
  • Lin BY; Department of Electrical Engineering, Yuan Ze University Taoyuan 32003 Taiwan tlchiu@saturn.yzu.edu.tw.
  • Ding WC; Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University Taipei 10617 Taiwan jiunhawlee@ntu.edu.tw.
  • Chen CH; Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University Taipei 10617 Taiwan jiunhawlee@ntu.edu.tw.
  • Kuo YP; AU Optronics Corporation Hsinchu 30010 Taiwan d01941010@ntu.edu.tw.
  • Lee JH; Graduate Institute of Photonics and Optoelectronics, Department of Electrical Engineering, National Taiwan University Taipei 10617 Taiwan jiunhawlee@ntu.edu.tw.
  • Lee CY; AU Optronics Corporation Hsinchu 30010 Taiwan d01941010@ntu.edu.tw.
  • Chiu TL; Department of Electrical Engineering, Yuan Ze University Taoyuan 32003 Taiwan tlchiu@saturn.yzu.edu.tw.
RSC Adv ; 11(34): 20884-20891, 2021 Jun 09.
Article em En | MEDLINE | ID: mdl-35479391
Developing a colloidal quantum-dot light-emitting device (QDLED) with high efficiency and good reliability is necessarily preliminary for the next-generation high-quality display application. Most QDLED reports are focused on efficiency improvement, but the device operational lifetime issue is less addressed and also the relevant degradation mechanisms. This study achieved a 1.72 times elongation in the operational lifetime and a 9 times improvement in the efficiency of QDLED by inserting a hole-transporting/electron-blocking poly(9-vinylcarbazole) (PVK) layer, which prevented operational degradation on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-secbutylphenyl))-diphenylamine)] (TFB) hole-transporting layer and also confined the electron in the QD-emitting layer. Although the TFB/PVK HTL structure is a well-known pair to enhance the device performance, its detailed mechanisms were rarely mentioned, especially for relative operational lifetime issues. Herein, a new insight behind operational lifetime elongation of QDLED is disclosed through various fundamental experiments including steady-state photoluminescence, transient electroluminescence and single-carrier only devices. Evidently, other than QD degradation, this study found that the other crucial factor that decreased the device lifetime was TFB-HTL degradation using steady-state photoluminescence and transient electroluminescence analyses. The PVK electron-only device exhibited a stable voltage value when it was driven by fixed current, which also affirmed that PVK has excellent electron-stability characteristics.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2021 Tipo de documento: Article