Your browser doesn't support javascript.
loading
Preinoculation with Endophytic fungus Phomopsis liquidambaris reduced rice bakanae disease caused by Fusarium proliferatum via enhanced plant resistance.
Zhu, Qiang; Wu, Yi-Bo; Chen, Man; Lu, Fan; Sun, Kai; Tang, Meng-Jun; Zhang, Wei; Bu, Yuan-Qing; Dai, Chuan-Chao.
Afiliação
  • Zhu Q; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China.
  • Wu YB; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China.
  • Chen M; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China.
  • Lu F; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China.
  • Sun K; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China.
  • Tang MJ; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China.
  • Zhang W; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China.
  • Bu YQ; State Key Laboratory for Pesticide Environment Assessment and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection, Jiangsu Province, China.
  • Dai CC; Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Jiangsu Province, China.
J Appl Microbiol ; 133(3): 1566-1580, 2022 Sep.
Article em En | MEDLINE | ID: mdl-35686661
ABSTRACT

AIMS:

This study evaluated the control effect of the endophytic fungus Phomopsis liquidambaris B3 against rice bakanae disease (RBD) caused by Fusarium proliferatum and the disease control result of different inoculation times of beneficial micro-organisms. METHODS AND

RESULTS:

Rice seedlings preinoculated, coinoculated and noninoculated with B3 were exposed to F. proliferatum stress and grown under controlled conditions. Greenhouse experimental results showed that rice preinoculation with B3 significantly reduced rice bakanae disease by 21.45%, inhibited the colonization of F. proliferatum, increased defence-related enzyme activities, upregulated the expression of defence genes and promoted plant photosynthesis. However, bakanae disease in rice coinoculation with B3 increased by 11.45%, resulted in excessive reactive oxygen species (ROS) bursts and plant cell death.

CONCLUSIONS:

Preinoculation with the endophytic fungus P. liquidambaris B3 significantly reduced rice bakanae disease by triggering the SA-dependent defence pathways of plants, and promoted plant growth. However, coinoculatiton with P. liquidambaris B3 activated excessive defence responses, resulting in plants cell death and aggravation of bakanae disease. SIGNIFICANCE AND IMPACT OF THE STUDY This study indicated that P. liquidambaris B3 was an effective method for agricultural control against rice bakanae disease caused by F. proliferatum, and provides an experimental basis for the development of sustainable endophytic fungal resources to effectively control plant diseases caused by pathogenic fungi, and suggests that precise application of beneficial micro-organisms may be become a key factor in farmland crop disease management.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ascomicetos / Oryza / Fusarium / Micoses Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ascomicetos / Oryza / Fusarium / Micoses Idioma: En Ano de publicação: 2022 Tipo de documento: Article