Your browser doesn't support javascript.
loading
Shaping Nanoscale Ribbons into Microhelices of Controllable Radius and Pitch.
Prévost, Lucas; Barber, Dylan M; Daïeff, Marine; Pham, Jonathan T; Crosby, Alfred J; Emrick, Todd; du Roure, Olivia; Lindner, Anke.
Afiliação
  • Prévost L; PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
  • Barber DM; Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States.
  • Daïeff M; PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
  • Pham JT; Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States.
  • Crosby AJ; Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States.
  • Emrick T; Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States.
  • du Roure O; PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
  • Lindner A; PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, F-75005, Paris, France.
ACS Nano ; 16(7): 10581-10588, 2022 Jul 26.
Article em En | MEDLINE | ID: mdl-35793417
We report fabrication of highly flexible micron-sized helices from nanometer-thick ribbons. Building upon the helical coiling of such ultrathin ribbons mediated by surface tension, we demonstrate that the enhanced creep properties of highly confined materials can be leveraged to shape helices into the desired geometry with full control of the final shape. The helical radius, total length, and pitch angle are all freely and independently tunable within a wide range: radius within ∼1-100 µm, length within ∼100-3000 µm, and pitch angle within ∼0-70°. This fabrication method is validated for three different materials: poly(methyl methacrylate), poly(dimethylaminoethyl methacrylate), and transition metal chalcogenide quantum dots, each corresponding to a different solid-phase structure: respectively a polymer glass, a cross-linked hydrogel, and a nanoparticle array. This demonstrates excellent versatility with respect to material selection, enabling further control of the helix mechanical properties.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article