Your browser doesn't support javascript.
loading
Data-Driven Supervised Compression Artifacts Detection on Continuous Glucose Sensors.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 1145-1148, 2022 07.
Article em En | MEDLINE | ID: mdl-36085641
Continuous Glucose Monitoring (CGM) sensors micro-invasively provide frequent glucose readings, improving the management of Type 1 diabetic patients' life and making available reach data-sets for retrospective analysis. Unlikely, CGM sensors are subject to failures, such as compression artifacts, that might impact on both real-time and respective CGM use. In this work is focused on retrospective detection of compression artifacts. An in-silico dataset is generated using the T1D UVa/Padova simulator and compression artifacts are subsequently added in known position, thus creating a dataset with perfectly accurate faulty/not-faulty labels. The problem of compression artifact detection is then faced with supervised data-driven techniques, in particular using Random Forest algorithm. The detection performance guaranteed by the method on in-silico data is satisfactory, opening the way for further analysis on real-data.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Automonitorização da Glicemia / Artefatos Tipo de estudo: Diagnostic_studies / Observational_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Automonitorização da Glicemia / Artefatos Tipo de estudo: Diagnostic_studies / Observational_studies Limite: Humans Idioma: En Ano de publicação: 2022 Tipo de documento: Article