Your browser doesn't support javascript.
loading
Gate-Tunable Proximity Effects in Graphene on Layered Magnetic Insulators.
Tseng, Chun-Chih; Song, Tiancheng; Jiang, Qianni; Lin, Zhong; Wang, Chong; Suh, Jaehyun; Watanabe, Kenji; Taniguchi, Takashi; McGuire, Michael A; Xiao, Di; Chu, Jiun-Haw; Cobden, David H; Xu, Xiaodong; Yankowitz, Matthew.
Afiliação
  • McGuire MA; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States.
  • Xiao D; Pacific Northwest National Laboratory, Richland, Washington99354, United States.
Nano Lett ; 22(21): 8495-8501, 2022 Nov 09.
Article em En | MEDLINE | ID: mdl-36279401
ABSTRACT
The extreme versatility of van der Waals materials originates from their ability to exhibit new electronic properties when assembled in close proximity to dissimilar crystals. For example, although graphene is inherently nonmagnetic, recent work has reported a magnetic proximity effect in graphene interfaced with magnetic substrates, potentially enabling a pathway toward achieving a high-temperature quantum anomalous Hall effect. Here, we investigate heterostructures of graphene and chromium trihalide magnetic insulators (CrI3, CrBr3, and CrCl3). Surprisingly, we are unable to detect a magnetic exchange field in the graphene but instead discover proximity effects featuring unprecedented gate tunability. The graphene becomes highly hole-doped due to charge transfer from the neighboring magnetic insulator and further exhibits a variety of atypical gate-dependent transport features. The charge transfer can additionally be altered upon switching the magnetic states of the nearest CrI3 layers. Our results provide a roadmap for exploiting proximity effects arising in graphene coupled to magnetic insulators.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2022 Tipo de documento: Article