Your browser doesn't support javascript.
loading
Optical and Flame-Retardant Properties of a Series of Polyimides Containing Side Chained Bulky Phosphaphenanthrene Units.
Homocianu, Mihaela; Serbezeanu, Diana; Lisa, Gabriela; Brebu, Mihai; Vlad-Bubulac, Tachița.
Afiliação
  • Homocianu M; "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania.
  • Serbezeanu D; "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania.
  • Lisa G; Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, Bd. Mangeron 73, 700050 Iasi, Romania.
  • Brebu M; "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania.
  • Vlad-Bubulac T; "Petru Poni" Institute of Macromolecular Chemistry, Aleea Gr. Ghica Voda, 41A, 700487 Iasi, Romania.
Int J Mol Sci ; 23(21)2022 Oct 29.
Article em En | MEDLINE | ID: mdl-36361962
Among the multitude of polymers with carbon-based macromolecular architectures that easily ignite in certain applications where short circuits may occur, polyimide has evolved as a class of polymers with high thermal stability while exhibiting intrinsic flame retardancy at elevated temperatures via a char-forming mechanism. However, high amounts of aromatic rings in the macromolecular backbone are required for these results, which may affect other properties such as film-forming capacity or mechanical properties; thus, much work has been done to structurally derivatize or make hybrid polyimide systems. In this respect, flexible polyimide films (PI(1-4)) containing bulky 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) units have been developed starting from commercial dianhydrides and an aromatic diamine containing two side chain bulky DOPO groups. The chemical structure of PI(1-4)) was characterized by 1H NMR, 13C NMR and 31P NMR spectroscopy. The optical properties, including absorption and luminescence spectra of these polymers, were analyzed. All polyimides containing DOPO derivatives emitted blue light with an emission maxima in the range of 340-445 nm, in solvents such as N,N-dimethylformamide, N-methyl-2-pyrrolidone, chloroform, and N,N-dimethylacetamide, while green light emission (λem = 487 nm for PI-4) was evidenced in a thin-film state. The thermal decomposition mechanism and flame-retardant behavior of the resulting materials were investigated by pyrolysis-gas-chromatography spectrometry (Py-GC), scanning electron microscopy (SEM), EDX maps and FTIR spectroscopy. The residues resulting from the TGA experiments were examined by SEM microscopy images and FTIR spectra to understand the pyrolysis mechanism.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Retardadores de Chama Idioma: En Ano de publicação: 2022 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Retardadores de Chama Idioma: En Ano de publicação: 2022 Tipo de documento: Article