Your browser doesn't support javascript.
loading
Brain-derived tau: a novel blood-based biomarker for Alzheimer's disease-type neurodegeneration.
Gonzalez-Ortiz, Fernando; Turton, Michael; Kac, Przemyslaw R; Smirnov, Denis; Premi, Enrico; Ghidoni, Roberta; Benussi, Luisa; Cantoni, Valentina; Saraceno, Claudia; Rivolta, Jasmine; Ashton, Nicholas J; Borroni, Barbara; Galasko, Douglas; Harrison, Peter; Zetterberg, Henrik; Blennow, Kaj; Karikari, Thomas K.
Afiliação
  • Gonzalez-Ortiz F; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden.
  • Turton M; Bioventix Plc, Romans Business Park, Farnham, Surrey GU9 7SX, UK.
  • Kac PR; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden.
  • Smirnov D; University of California, San Diego and Shiely-Marcos Alzheimer's Disease Research Center, La Jolla, CA 92037, USA.
  • Premi E; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, BS 25121, Italy.
  • Ghidoni R; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia 25121, Italy.
  • Benussi L; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia 25121, Italy.
  • Cantoni V; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, BS 25121, Italy.
  • Saraceno C; Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia 25121, Italy.
  • Rivolta J; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, BS 25121, Italy.
  • Ashton NJ; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden.
  • Borroni B; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 405 30, Sweden.
  • Galasko D; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, SE5 8AF, UK.
  • Harrison P; NIHR Biomedical Research Centre for Mental Health and Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation, London, SE5 8AF, UK.
  • Zetterberg H; Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, BS 25121, Italy.
  • Blennow K; University of California, San Diego and Shiely-Marcos Alzheimer's Disease Research Center, La Jolla, CA 92037, USA.
  • Karikari TK; Bioventix Plc, Romans Business Park, Farnham, Surrey GU9 7SX, UK.
Brain ; 146(3): 1152-1165, 2023 03 01.
Article em En | MEDLINE | ID: mdl-36572122
Blood-based biomarkers for amyloid beta and phosphorylated tau show good diagnostic accuracies and agreements with their corresponding CSF and neuroimaging biomarkers in the amyloid/tau/neurodegeneration [A/T/(N)] framework for Alzheimer's disease. However, the blood-based neurodegeneration marker neurofilament light is not specific to Alzheimer's disease while total-tau shows lack of correlation with CSF total-tau. Recent studies suggest that blood total-tau originates principally from peripheral, non-brain sources. We sought to address this challenge by generating an anti-tau antibody that selectively binds brain-derived tau and avoids the peripherally expressed 'big tau' isoform. We applied this antibody to develop an ultrasensitive blood-based assay for brain-derived tau, and validated it in five independent cohorts (n = 609) including a blood-to-autopsy cohort, CSF biomarker-classified cohorts and memory clinic cohorts. In paired samples, serum and CSF brain-derived tau were significantly correlated (rho = 0.85, P < 0.0001), while serum and CSF total-tau were not (rho = 0.23, P = 0.3364). Blood-based brain-derived tau showed equivalent diagnostic performance as CSF total-tau and CSF brain-derived tau to separate biomarker-positive Alzheimer's disease participants from biomarker-negative controls. Furthermore, plasma brain-derived tau accurately distinguished autopsy-confirmed Alzheimer's disease from other neurodegenerative diseases (area under the curve = 86.4%) while neurofilament light did not (area under the curve = 54.3%). These performances were independent of the presence of concomitant pathologies. Plasma brain-derived tau (rho = 0.52-0.67, P = 0.003), but not neurofilament light (rho = -0.14-0.17, P = 0.501), was associated with global and regional amyloid plaque and neurofibrillary tangle counts. These results were further verified in two memory clinic cohorts where serum brain-derived tau differentiated Alzheimer's disease from a range of other neurodegenerative disorders, including frontotemporal lobar degeneration and atypical parkinsonian disorders (area under the curve up to 99.6%). Notably, plasma/serum brain-derived tau correlated with neurofilament light only in Alzheimer's disease but not in the other neurodegenerative diseases. Across cohorts, plasma/serum brain-derived tau was associated with CSF and plasma AT(N) biomarkers and cognitive function. Brain-derived tau is a new blood-based biomarker that outperforms plasma total-tau and, unlike neurofilament light, shows specificity to Alzheimer's disease-type neurodegeneration. Thus, brain-derived tau demonstrates potential to complete the AT(N) scheme in blood, and will be useful to evaluate Alzheimer's disease-dependent neurodegenerative processes for clinical and research purposes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Alzheimer Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença de Alzheimer Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article