Your browser doesn't support javascript.
loading
Synthetic mRNA rescues very long-chain acyl-CoA dehydrogenase deficiency in patient fibroblasts and a murine model.
Zhao, Xue-Jun; Mohsen, Ai-Walid; Mihalik, Stephanie; Solo, Keaton; Aliu, Ermal; Shi, Huifang; Basu, Shakuntala; Kochersperger, Catherine; Van't Land, Clinton; Karunanidhi, Anuradha; Coughlan, Kimberly A; Siddiqui, Summar; Rice, Lisa M; Hillier, Shawn; Guadagnin, Eleonora; Giangrande, Paloma H; Martini, Paolo G V; Vockley, Jerry.
Afiliação
  • Zhao XJ; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
  • Mohsen AW; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
  • Mihalik S; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
  • Solo K; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
  • Aliu E; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
  • Shi H; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
  • Basu S; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
  • Kochersperger C; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
  • Van't Land C; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
  • Karunanidhi A; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
  • Coughlan KA; Moderna Therapeutics, Inc., Rare Diseases, 200 Technology Square, Cambridge, MA, USA.
  • Siddiqui S; Moderna Therapeutics, Inc., Rare Diseases, 200 Technology Square, Cambridge, MA, USA.
  • Rice LM; Moderna Therapeutics, Inc., Rare Diseases, 200 Technology Square, Cambridge, MA, USA.
  • Hillier S; Moderna Therapeutics, Inc., Rare Diseases, 200 Technology Square, Cambridge, MA, USA.
  • Guadagnin E; Moderna Therapeutics, Inc., Rare Diseases, 200 Technology Square, Cambridge, MA, USA.
  • Giangrande PH; Moderna Therapeutics, Inc., Rare Diseases, 200 Technology Square, Cambridge, MA, USA.
  • Martini PGV; Moderna Therapeutics, Inc., Rare Diseases, 200 Technology Square, Cambridge, MA, USA.
  • Vockley J; Division of Genetic and Genomic Medicine, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA; Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA. Electronic address: vockleyg@upmc.edu.
Mol Genet Metab ; 138(1): 106982, 2023 01.
Article em En | MEDLINE | ID: mdl-36580829
ABSTRACT
Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is an inborn error of long chain fatty acid ß-oxidation (FAO) with limited treatment options. Patients present with heterogeneous clinical phenotypes affecting predominantly heart, liver, and skeletal muscle. While VLCAD deficiency is a systemic disease, restoration of liver FAO has the potential to improve symptoms more broadly due to increased total body ATP production and reduced accumulation of potentially toxic metabolites. We explored the use of synthetic human VLCAD (hVLCAD) mRNA and lipid nanoparticle encapsulated hVLCAD mRNA (LNP-VLCAD) to generate functional VLCAD enzyme in patient fibroblasts derived from VLCAD deficient patients, mouse embryonic fibroblasts, hepatocytes isolated from VLCAD knockout (Acadvl-/-) mice, and Acadvl-/- mice to reverse the metabolic effects of the deficiency. Transfection of all cell types with hVLCAD mRNA resulted in high level expression of protein that localized to mitochondria with increased enzyme activity. Intravenous administration of LNP-VLCAD to Acadvl-/- mice produced a significant amount of VLCAD protein in liver, which declined over a week. Treated Acadvl-/- mice showed reduced hepatic steatosis, were more resistant to cold stress, and accumulated less toxic metabolites in blood than untreated animals. Results from this study support the potential for hVLCAD mRNA for treatment of VLCAD deficiency.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acil-CoA Desidrogenase de Cadeia Longa / Erros Inatos do Metabolismo Lipídico Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Acil-CoA Desidrogenase de Cadeia Longa / Erros Inatos do Metabolismo Lipídico Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article