Your browser doesn't support javascript.
loading
Polarization-resolved and helicity-resolved Raman spectra of monolayer XP3 (X = Ge and In).
Huang, Haiming; Liu, Huijun; Ding, Mingquan; Wang, Weiliang; Zhang, Shaolin.
Afiliação
  • Huang H; Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510555, China. slzhang@gzhu.edu.cn.
  • Liu H; Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
  • Ding M; Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
  • Wang W; Research Center for Advanced Information Materials (CAIM), Huangpu Research and Graduate School of Guangzhou University, Guangzhou 510555, China. slzhang@gzhu.edu.cn.
  • Zhang S; Solid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China.
Phys Chem Chem Phys ; 25(3): 2366-2376, 2023 Jan 18.
Article em En | MEDLINE | ID: mdl-36598003
ABSTRACT
Monolayer XP3 (X = Ge, In) is a theoretically predicted two-dimensional (2D) material with fascinating adsorption efficiency, foreshadowing its potential applications in the photovoltaic and optoelectronic communities. To achieve a comprehensive understanding of its optical properties and to further boost quickly identifying its specific applications, in this paper we systematically investigated the polarization-resolved and helicity-resolved Raman spectra excited by two commonly used laser lines (532 nm and 633 nm) through density functional theory. The dynamical stability of monolayer XP3 is demonstrated by phonon dispersion. Monolayer GeP3 and InP3 are found to exhibit significantly different point group symmetries and thereby Raman properties due to the big difference in atomic size and electronic configurations between the Ge atom and In atom. Raman anisotropy of monolayer XP3 has been found when the wave vector of linear polarized incident light is parallel to the monolayer, and all the anisotropic Raman active phonons are categorized in terms of the locations of two (four) maxima in polarization angle dependent Raman intensities of the parallel (perpendicular) configuration. The polarization direction averaged Raman spectra have been further discussed according to the characteristics of light absorbance. The calculations of helicity-resolved Raman spectra indicate a stronger helicity selection rule under helical excitation with the wave vector normal to the monolayer. The present work paves the way for the suitable design, characterization and exploitation of the proposed 2D material with controllable surface properties for applications in electronics and optoelectronics.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article