Your browser doesn't support javascript.
loading
The Stressed Gut: Region-specific Immune and Neuroplasticity Changes in Response to Chronic Psychosocial Stress.
Lobo, Beatriz; Tramullas, Mónica; Finger, Beate-C; Lomasney, Kevin W; Beltran, Caroll; Clarke, Gerard; Santos, Javier; Hyland, Niall P; Dinan, Timothy G; Cryan, John F.
Afiliação
  • Lobo B; APC Microbiome Ireland, University College Cork, Ireland.
  • Tramullas M; Digestive System Research Unit, Laboratory of Neuro-Immuno-Gastroenterology, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain.
  • Finger BC; Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Passeig Vall d'Hebron Barcelona, Spain.
  • Lomasney KW; Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
  • Beltran C; APC Microbiome Ireland, University College Cork, Ireland.
  • Clarke G; Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain (Current address).
  • Santos J; APC Microbiome Ireland, University College Cork, Ireland.
  • Hyland NP; APC Microbiome Ireland, University College Cork, Ireland.
  • Dinan TG; Departments of Anatomy and Neuroscience, University College Cork, Ireland.
  • Cryan JF; APC Microbiome Ireland, University College Cork, Ireland.
J Neurogastroenterol Motil ; 29(1): 72-84, 2023 Jan 30.
Article em En | MEDLINE | ID: mdl-36606438
Background/Aims: Chronic psychological stress affects gastrointestinal physiology which may underpin alterations in the immune response and epithelial transport, both functions are partly regulated by enteric nervous system. However, its effects on enteric neuroplasticity are still unclear. This study aims to investigate the effects of chronic unpredictable psychological stress on intestinal motility and prominent markers of enteric function. Methods: Adult male C57BL/6J mice were exposed to 19 day of unpredictable stress protocol schedule of social defeat and overcrowding. We investigated the effects on plasma corticosterone, food intake, and body weight. In vivo gastrointestinal motility was assessed by fecal pellet output and by whole-gastrointestinal transit (using the carmine red method). Tissue monoamine level, neural and glial markers, neurotrophic factors, monoamine signaling, and Toll-like receptor expression in the proximal and distal colon, and terminal ileum were also assessed. Results: Following chronic unpredictable psychological stress, stressed mice showed increased food intake and body weight gain (P < 0.001), and reduced corticosterone levels (P < 0.05) compared to control mice. Stressed mice had reduced stool output without differences in water content, and showed a delayed gastrointestinal transit compared to control mice (P < 0.05). Stressed mice exhibited decreased mRNA expression of tyrosine hydroxylase (Th), brain-derived neurotrophic factor (Bdnf) and glial cell-derived neurotrophic factor (Gdnf), as well as Toll-like receptor 2 (Tlr2) compared to control (P < 0.05), only proximal colon. These molecular changes in proximal colon were associated with higher levels of monoamines in tissue. Conclusion: Unpredictable psychological chronic stress induces region-specific impairment in monoamine levels and neuroplasticity markers that may relate to delayed intestinal transit.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article