Your browser doesn't support javascript.
loading
Metabolism response mechanism in the gill of Oreochromis mossambicus under salinity, alkalinity and saline-alkalinity stresses.
Su, Huanhuan; Ma, Dongmei; Fan, Jiajia; Zhong, Zaixuan; Li, Yaya; Zhu, Huaping.
Afiliação
  • Su H; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Shanghai Ocean University, College of Fisheries and Life Science,
  • Ma D; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology
  • Fan J; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology
  • Zhong Z; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China.
  • Li Y; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Shanghai Ocean University, College of Fisheries and Life Science,
  • Zhu H; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China; Guangdong Provincial Key Laboratory of Aquatic Animal Immunology
Ecotoxicol Environ Saf ; 251: 114523, 2023 Feb.
Article em En | MEDLINE | ID: mdl-36638565
ABSTRACT
Saline-alkalinity is one of the important ecological parameter that has an impact function on the physiological metabolism, osmoregulation, survival, growth, development and distribution of teleost fish. Oreochromis mossambicus, a species of euryhaline that can withstand a wide variety of salinities, may be used as a research model animal in environmental studies. In order to detect the metabolism responses and mechanisms of different osmotic stresses tolerance in the gills of O. mossambicus, in present study, the metabolic responses of O. mossambicus subjected to salinity (25 g/L, S_S), alkalinity (4 g/L, A_S) and saline-alkalinity stress (salinity 25 g/L, alkalinity 4 g/L; SA_S) with the control environment (freshwater, C_S) were investigated by LC-MS/MS-based metabolomics. The metabolism results indicated that numerous metabolites were identified between the stress groups and the control group. In addition, under three osmotic stresses, the amino acid and carbohydrate metabolism, levels of amino acids, osmolytes and energy substances, such as L-lysine, arachidonic acid, docosahexaenoic acids, creatine and taurine, were significantly affected and changed in the metabolism of the gills of O. mossambicus. The metabolism data indicated that signal transduction and regulation pathways, including FoxO signaling pathway, mTOR signaling pathway and prolactin signaling pathway, were enriched in the gill during adaptation to high salinity, alkalinity and saline-alkalinity stress. The results of this study provide more comprehensive and reliable data for the osmotic pressure regulation mechanism and biological response of euryhaline teleost, and provide reliable scientific basis for the breeding and research of high salinity tolerance population, and further promote the development and utilization of saline-alkalinity water resources.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tilápia Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tilápia Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article