Your browser doesn't support javascript.
loading
Synthesis of hyperbranched polymer films via electrodeposition and oxygen-tolerant surface-initiated photoinduced polymerization.
Rong, Li-Han; Cheng, Xiang; Ge, Jin; Krebs, Olivia K; Capadona, Jeffrey R; Caldona, Eugene B; Advincula, Rigoberto C.
Afiliação
  • Rong LH; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States.
  • Cheng X; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States.
  • Ge J; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States.
  • Krebs OK; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
  • Capadona JR; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH 44106, United States.
  • Caldona EB; Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND 58102, United States.
  • Advincula RC; Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, United States; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, United States; Department of Chemical and Biomolecular Engineering and Institute for
J Colloid Interface Sci ; 637: 33-40, 2023 May.
Article em En | MEDLINE | ID: mdl-36682116
ABSTRACT

HYPOTHESIS:

Hyperbranched polymers, not only possess higher functionality, but are also easier to prepare compared to dendrimers and dendric polymers. Combining electrodeposition and surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization is hypothesized to be a novel strategy for preparing hyperbranched polymer films on conductive surfaces without degassing. EXPERIMENTS Polymer brush grafted films with four different architectures (i.e. linear, branched, linear-block-branched, and branched-block-linear) were prepared on gold-coated glass substrates using electrodeposition, followed by SI-PET-RAFT polymerization. The resulting film structure and thickness, surface topology, absorption property, and electrochemical behavior were confirmed by spectroscopy, microscopy, microbalance technique, and impedance measurement.

FINDINGS:

These hyperbranched polymer brushes were capable of forming a thicker but more uniformly covered films compared to linear polymer brush films, demonstrating that hyperbranched polymer films can be potentially useful for fabricating protective polymer coatings on various conductive surfaces.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article