Your browser doesn't support javascript.
loading
Nucleoli and the nucleoli-centromere association are dynamic during normal development and in cancer.
Rodrigues, Aaron; MacQuarrie, Kyle L; Freeman, Emma; Lin, Alicia; Willis, Alexander B; Xu, Zhaofa; Alvarez, Angel A; Ma, Yongchao; White, Bethany E Perez; Foltz, Daniel R; Huang, Sui.
Afiliação
  • Rodrigues A; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
  • MacQuarrie KL; Division of Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
  • Freeman E; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
  • Lin A; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
  • Willis AB; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
  • Xu Z; Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
  • Alvarez AA; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611.
  • Ma Y; Stem Cell Core and Ken & Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
  • White BEP; Departments of Pediatrics, Neurology and Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
  • Foltz DR; Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611.
  • Huang S; Department of Dermatology and Skin Biology and Diseases Resource-based Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611.
Mol Biol Cell ; 34(4): br5, 2023 04 01.
Article em En | MEDLINE | ID: mdl-36753381
ABSTRACT
Centromeres are known to cluster around nucleoli in Drosophila and mammalian cells, but the significance of the nucleoli-centromere interaction remains underexplored. To determine whether the interaction is dynamic under different physiological and pathological conditions, we examined nucleolar structure and centromeres at various differentiation stages using cell culture models and the results showed dynamic changes in nucleolar characteristics and nucleoli-centromere interactions through differentiation and in cancer cells. Embryonic stem cells usually have a single large nucleolus, which is clustered with a high percentage of centromeres. As cells differentiate into intermediate states, the nucleolar number increases and the centromere association decreases. In terminally differentiated cells, including myotubes, neurons, and keratinocytes, the number of nucleoli and their association with centromeres are at the lowest. Cancer cells demonstrate the pattern of nucleoli number and nucleoli-centromere association that is akin to proliferative cell types, suggesting that nucleolar reorganization and changes in nucleoli-centromere interactions may play a role in facilitating malignant transformation. This idea is supported in a case of pediatric rhabdomyosarcoma, in which induced differentiation reduces the nucleolar number and centromere association. These findings suggest active roles of nucleolar structure in centromere function and genome organization critical for cellular function in both normal development and cancer.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nucléolo Celular / Neoplasias Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nucléolo Celular / Neoplasias Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article