Your browser doesn't support javascript.
loading
Enriched cell-free and cell-based native membrane derived vesicles (nMV) enabling rapid in-vitro electrophysiological analysis of the voltage-gated sodium channel 1.5.
Pandey, Yogesh; Dondapati, Srujan Kumar; Kubick, Stefan.
Afiliação
  • Pandey Y; Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; Institut für Biochemie und Biologie, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam OT Golm, Germany.
  • Dondapati SK; Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany. Electronic address: srujan.dondapati@izi-bb.fraunhofer.de.
  • Kubick S; Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; Technische Universität Berlin, Institute of Biotechnology, Straße des 17. Juni 135, 10623 Berlin, Germany; Freie Universität Berlin, Institute of Chemistry and Biochemistry, 14195 Berlin, Germany; Faculty of Health Science, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, the Brandenburg Medical School Theodor Fontane a
Biochim Biophys Acta Biomembr ; 1865(5): 184144, 2023 06.
Article em En | MEDLINE | ID: mdl-36889502
ABSTRACT
Here, we demonstrate the utility of native membrane derived vesicles (nMVs) as tools for expeditious electrophysiological analysis of membrane proteins. We used a cell-free (CF) and a cell-based (CB) approach for preparing protein-enriched nMVs. We utilized the Chinese Hamster Ovary (CHO) lysate-based cell-free protein synthesis (CFPS) system to enrich ER-derived microsomes in the lysate with the primary human cardiac voltage-gated sodium channel 1.5 (hNaV1.5; SCN5A) in 3 h. Subsequently, CB-nMVs were isolated from fractions of nitrogen-cavitated CHO cells overexpressing the hNaV1.5. In an integrative approach, nMVs were micro-transplanted into Xenopus laevis oocytes. CB-nMVs expressed native lidocaine-sensitive hNaV1.5 currents within 24 h; CF-nMVs did not elicit any response. Both the CB- and CF-nMV preparations evoked single-channel activity on the planar lipid bilayer while retaining sensitivity to lidocaine application. Our findings suggest a high usability of the quick-synthesis CF-nMVs and maintenance-free CB-nMVs as ready-to-use tools for in-vitro analysis of electrogenic membrane proteins and large, voltage-gated ion channels.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Canais de Sódio Disparados por Voltagem Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Canais de Sódio Disparados por Voltagem Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article