Your browser doesn't support javascript.
loading
Effective perspiration is essential to uphold the stability of zero-gap MEA-based cathodes used in CO2 electrolysers.
Hu, Huifang; Kong, Ying; Liu, Menglong; Kolivoska, Viliam; Rudnev, Alexander V; Hou, Yuhui; Erni, Rolf; Vesztergom, Soma; Broekmann, Peter.
Afiliação
  • Hu H; NCCR Catalysis, University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern Switzerland peter.broekmann@unibe.ch vesztergom@chem.elte.hu.
  • Kong Y; NCCR Catalysis, University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern Switzerland peter.broekmann@unibe.ch vesztergom@chem.elte.hu.
  • Liu M; NCCR Catalysis, University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern Switzerland peter.broekmann@unibe.ch vesztergom@chem.elte.hu.
  • Kolivoska V; J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences Dolejskova 3 182 23 Prague Czechia.
  • Rudnev AV; NCCR Catalysis, University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern Switzerland peter.broekmann@unibe.ch vesztergom@chem.elte.hu.
  • Hou Y; A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences Leninsky Prospekt 31 119071 Moscow Russia.
  • Erni R; NCCR Catalysis, University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern Switzerland peter.broekmann@unibe.ch vesztergom@chem.elte.hu.
  • Vesztergom S; Swiss Federal Laboratories for Materials Science and Technology (EMPA), Electron Microscopy Center Überlandstrasse 129 8600 Dübendorf Switzerland.
  • Broekmann P; NCCR Catalysis, University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern Switzerland peter.broekmann@unibe.ch vesztergom@chem.elte.hu.
J Mater Chem A Mater ; 11(10): 5083-5094, 2023 Mar 07.
Article em En | MEDLINE | ID: mdl-36911161
ABSTRACT
The application of gas diffusion electrodes (GDEs) for the electrochemical reduction of CO2 to value-added products creates the possibility of achieving current densities of a few hundred mA cm-2. To achieve stable operation at such high reaction rates remains, however, a challenging task, due to the flooding of the GDE. In order to mitigate flooding in a zero-gap membrane-electrode assembly (MEA) configuration, paths for effective electrolyte perspiration inside the GDE structure have to be kept open during the electrolysis process. Here we demonstrate that apart from the operational parameters of the electrolysis and the structural properties of the supporting gas diffusion layers, also the chemical composition of the applied catalyst inks can play a decisive role in the electrolyte management of GDEs used for CO2 electroreduction. In particular, the presence of excess amounts of polymeric capping agents (used to stabilize the catalyst nanoparticles) can lead to a blockage of micropores, which hinders perspiration and initiates the flooding of the microporous layer. Here we use a novel ICP-MS analysis-based approach to quantitatively monitor the amount of perspired electrolyte that exits a GDE-based CO2 electrolyser, and we show a direct correlation between the break-down of effective perspiration and the appearance of flooding-the latter ultimately leading to a loss of electrolyser stability. We recommend the use of an ultracentrifugation-based approach by which catalyst inks containing no excess amount of polymeric capping agents can be formulated. Using these inks, the stability of electrolyses can be ensured for much longer times.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article