Your browser doesn't support javascript.
loading
Marine Submicron Aerosols from the Gulf of Mexico: Polluted and Acidic with Rapid Production of Sulfate and Organosulfates.
Zhou, Shan; Guo, Fangzhou; Chao, Chun-Ying; Yoon, Subin; Alvarez, Sergio L; Shrestha, Sujan; Flynn, James H; Usenko, Sascha; Sheesley, Rebecca J; Griffin, Robert J.
Afiliação
  • Zhou S; Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States.
  • Guo F; Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States.
  • Chao CY; Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States.
  • Yoon S; Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, United States.
  • Alvarez SL; Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, United States.
  • Shrestha S; Department of Environmental Science, Baylor University, Waco, Texas 76798, United States.
  • Flynn JH; Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, United States.
  • Usenko S; Department of Environmental Science, Baylor University, Waco, Texas 76798, United States.
  • Sheesley RJ; Department of Environmental Science, Baylor University, Waco, Texas 76798, United States.
  • Griffin RJ; Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States.
Environ Sci Technol ; 57(13): 5149-5159, 2023 04 04.
Article em En | MEDLINE | ID: mdl-36939598
ABSTRACT
We measured submicron aerosols (PM1) at a beachfront site in Texas in Spring 2021 to characterize the "background" aerosol chemical composition advecting into Texas and the factors controlling this composition. Observations show that marine "background" aerosols from the Gulf of Mexico were highly processed and acidic; sulfate was the most abundant component (on average 57% of total PM1 mass), followed by organic material (26%). These chemical characteristics are similar to those observed at other marine locations globally. However, Gulf "background" aerosols were much more polluted; the average non-refractory (NR-) PM1 mass concentration was 3-70 times higher than that observed in other clean marine atmospheres. Anthropogenic shipping emissions over the Gulf of Mexico explain 78.3% of the total measured "background" sulfate in the Gulf air. We frequently observed haze pollution in the air mass from the Gulf, with significantly elevated concentrations of sulfate, organosulfates, and secondary organic aerosol associated with sulfuric acid. Analysis suggests that aqueous oxidation of shipping emissions over the Gulf of Mexico by peroxides in the particles might potentially be an important pathway for the rapid production of acidic sulfate and organosulfates during the haze episodes under acidic conditions.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sulfatos / Poluentes Atmosféricos País/Região como assunto: Asia / Mexico Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Sulfatos / Poluentes Atmosféricos País/Região como assunto: Asia / Mexico Idioma: En Ano de publicação: 2023 Tipo de documento: Article