Your browser doesn't support javascript.
loading
Antibody and Nanobody Radiolabeling with Copper-64: Solid vs. Liquid Target Approach.
Hrynchak, Ivanna; Cocioaba, Diana; Fonseca, Alexandra I; Leonte, Radu; do Carmo, Sérgio J C; Cornoiu, Roxana; Falcão, Amílcar; Niculae, Dana; Abrunhosa, Antero J.
Afiliação
  • Hrynchak I; Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal.
  • Cocioaba D; Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Magurele, Romania.
  • Fonseca AI; Faculty of Physics, Doctoral School of Physics, University of Bucharest, 077125 Bucharest, Romania.
  • Leonte R; Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal.
  • do Carmo SJC; Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Magurele, Romania.
  • Cornoiu R; Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal.
  • Falcão A; Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal.
  • Niculae D; Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal.
  • Abrunhosa AJ; Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Magurele, Romania.
Molecules ; 28(12)2023 Jun 09.
Article em En | MEDLINE | ID: mdl-37375223
Antibody and nanobody-based copper-64 radiopharmaceuticals are increasingly being proposed as theranostic tools in multiple human diseases. While the production of copper-64 using solid targets has been established for many years, its use is limited due to the complexity of solid target systems, which are available in only a few cyclotrons worldwide. In contrast, liquid targets, available in virtually in all cyclotrons, constitute a practical and reliable alternative. In this study, we discuss the production, purification, and radiolabeling of antibodies and nanobodies using copper-64 obtained from both solid and liquid targets. Copper-64 production from solid targets was performed on a TR-19 cyclotron with an energy of 11.7 MeV, while liquid target production was obtained by bombarding a nickel-64 solution using an IBA Cyclone Kiube cyclotron with 16.9 MeV on target. Copper-64 was purified from both solid and liquid targets and used to radiolabel NODAGA-Nb, NOTA-Nb, and DOTA-Trastuzumab conjugates. Stability studies were conducted on all radioimmunoconjugates in mouse serum, PBS, and DTPA. Irradiation of the solid target yielded 13.5 ± 0.5 GBq with a beam current of 25 ± 1.2 µA and an irradiation time of 6 h. On the other hand, irradiation of the liquid target resulted in 2.8 ± 1.3 GBq at the end of bombardment (EOB) with a beam current of 54.5 ± 7.8 µA and an irradiation time of 4.1 ± 1.3 h. Successful radiolabeling of NODAGA-Nb, NOTA-Nb, and DOTA-Trastuzumab with copper-64 from both solid and liquid targets was achieved. Specific activities (SA) obtained with the solid target were 0.11, 0.19, and 0.33 MBq/µg for NODAGA-Nb, NOTA-Nb, and DOTA-trastuzumab, respectively. For the liquid target, the corresponding SA values were 0.15, 0.12, and 0.30 MBq/µg. Furthermore, all three radiopharmaceuticals demonstrated stability under the testing conditions. While solid targets have the potential to produce significantly higher activity in a single run, the liquid process offers advantages such as speed, ease of automation, and the feasibility of back-to-back production using a medical cyclotron. In this study, successful radiolabeling of antibodies and nanobodies was achieved using both solid and liquid targets approaches. The radiolabeled compounds exhibited high radiochemical purity and specific activity, rendering them suitable for subsequent in vivo pre-clinical imaging studies.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radioisótopos de Cobre / Anticorpos de Domínio Único Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Radioisótopos de Cobre / Anticorpos de Domínio Único Limite: Animals / Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article