Your browser doesn't support javascript.
loading
Journey to the deep: plastic pollution in the hadal of deep-sea trenches.
Abel, Serena M; Wu, Fangzhu; Primpke, Sebastian; Gerdts, Gunnar; Brandt, Angelika.
Afiliação
  • Abel SM; Senckenberg Research Institute and Natural History Museum; Department of Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201,
  • Wu F; Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498, Helgoland, Germany.
  • Primpke S; Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498, Helgoland, Germany.
  • Gerdts G; Department of Microbial Ecology, Biologische Anstalt Helgoland, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Kurpromenade 201, 27498, Helgoland, Germany.
  • Brandt A; Senckenberg Research Institute and Natural History Museum; Department of Marine Zoology, Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Goethe University Frankfurt, Institute for Ecology, Diversity and Evolution, Max-von-Laue-Straße 13, 60438 Frankfurt am Main, Germany.
Environ Pollut ; 333: 122078, 2023 Sep 15.
Article em En | MEDLINE | ID: mdl-37379878
ABSTRACT
The global increase of plastic production, linked with an overall plastic misuse and waste mismanagement, leads to an inevitable increase of plastic debris that ends up in our oceans. One of the major sinks of this pollution is the deep-sea floor, which is hypothesized to accumulate in its deepest points, the hadal trenches. Little is known about the magnitude of pollution in these trenches, given the remoteness of these environments, numerous factors influencing the input and sinking behavior of plastic debris from shallower environments. This study represents to the best of our knowledge the largest survey of (macro)plastic debris sampled at hadal depths, down to 9600 m. Industrial packaging and material assignable to fishing activities were the most common debris items in the Kuril Kamchatka trench, most likely deriving from long-distance transport by the Kuroshio extension current (KE) or from regional marine traffic and fishing activities. The chemical analysis by (Attenuated Total Reflection Fourier transform infrared (ATR-FTIR) spectroscopy revealed that the main polymers detected were polyethylene (PE), polypropylene (PP) and nylon. Plastic waste is reaching the depths of the trench, although some of the items were only partially broken down. This finding suggests that complete breakdown into secondary microplastics (MP) may not always occur at the sea surface or though the water column. Due to increased brittleness, plastic debris may break apart upon reaching the hadal trench floor where plastic degrading factors were thought to be, coming off. The KKT's remote location and high sedimentation rates make it a potential site for high levels of plastic pollution, potentially making it one of the world's most heavily contaminated marine areas and an oceanic plastic deposition zone.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plásticos / Poluentes Químicos da Água Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Plásticos / Poluentes Químicos da Água Idioma: En Ano de publicação: 2023 Tipo de documento: Article