Your browser doesn't support javascript.
loading
Partial sequence identity in a 25-nucleotide long element is sufficient for transcriptional adaptation in the Caenorhabditis elegans act-5/act-3 model.
Welker, Jordan M; Serobyan, Vahan; Zaker Esfahani, Elhamalsadat; Stainier, Didier Y R.
Afiliação
  • Welker JM; Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
  • Serobyan V; Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
  • Zaker Esfahani E; Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
  • Stainier DYR; Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany.
PLoS Genet ; 19(6): e1010806, 2023 Jun.
Article em En | MEDLINE | ID: mdl-37384903
Genetic robustness can be achieved via several mechanisms including transcriptional adaptation (TA), a sequence similarity-driven process whereby mutant mRNA degradation products modulate, directly or indirectly, the expression of so-called adapting genes. To identify the sequences required for this process, we utilized a transgenic approach in Caenorhabditis elegans, combining an overexpression construct for a mutant gene (act-5) and a fluorescent reporter for the corresponding adapting gene (act-3). Analyzing a series of modifications for each construct, we identified, in the 5' regulatory region of the act-3 locus, a 25-base pair (bp) element which exhibits 60% identity with a sequence in the act-5 mRNA and which, in the context of a minimal promoter, is sufficient to induce ectopic expression of the fluorescent reporter. The 25 nucleotide (nt) element in the act-5 mRNA lies between the premature termination codon (PTC) and the next exon/exon junction, suggesting the importance of this region of the mutant mRNA for TA. Additionally, we found that single-stranded RNA injections of this 25 nt element from act-5 into the intestine of wild-type larvae led to higher levels of adapting gene (act-3) mRNA. Different models have been proposed to underlie the modulation of gene expression during TA including chromatin remodeling, the inhibition of antisense RNAs, the release of transcriptional pausing, and the suppression of premature transcription termination, and our data clearly show the importance of the regulatory region of the adapting gene in this particular act-5/act-3 TA model. Our findings also suggest that RNA fragments can modulate the expression of loci exhibiting limited sequence similarity, possibly a critical observation when designing RNA based therapies.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Caenorhabditis elegans / Aclimatação Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Caenorhabditis elegans / Aclimatação Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article