Your browser doesn't support javascript.
loading
Influence of Encapsulation on the Efficiency and Positive Aging Behavior in Blue Quantum Dot Light-Emitting Devices.
Chen, Junfei; Ghorbani, Atefeh; Chung, Dong Seob; Azadinia, Mohsen; Davidson-Hall, Tyler; Chun, Peter; Lyu, Quan; Cotella, Giovanni; Song, Dandan; Xu, Zheng; Aziz, Hany.
Afiliação
  • Chen J; Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
  • Ghorbani A; Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China.
  • Chung DS; Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China.
  • Azadinia M; Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
  • Davidson-Hall T; Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
  • Chun P; Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
  • Lyu Q; Department of Electrical and Computer Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
  • Cotella G; Ottawa IC Laboratory, Huawei Canada, 19 Allstate Parkway, Markham, Ontario L3R 5B4, Canada.
  • Song D; Ipswich Research Centre, Huawei Technologies Research & Development (UK) Ltd., Phoenix House, (B55), Adastral Park, Ipswich IP5 3RE, U.K.
  • Xu Z; Ipswich Research Centre, Huawei Technologies Research & Development (UK) Ltd., Phoenix House, (B55), Adastral Park, Ipswich IP5 3RE, U.K.
  • Aziz H; Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China.
ACS Appl Mater Interfaces ; 15(28): 34240-34248, 2023 Jul 19.
Article em En | MEDLINE | ID: mdl-37421356
Encapsulating blue quantum dot light-emitting devices (QLEDs) using an ultraviolet curable resin is known to lead to a significant increase in their efficiency. Some of this efficiency increase occurs immediately, whereas some of it proceeds over a period of time, typically over several tens of hours following the encapsulation, a behavior commonly referred to as positive aging. The root causes of this positive aging, especially in blue QLEDs, remain not well understood. Here, it is revealed that contrary to the expectation, the significant improvement in device efficiency during positive aging arises primarily from an improvement in electron injection across the QD/ZnMgO interface and not due to the inhibition of interface exciton quenching as is widely believed. The underlying changes are investigated by XPS measurements. Results show that the enhancement in device performance arises primarily from the reduction in O-related defects in both the QDs and ZnMgO at the QD/ZnMgO interface. After 51.5 h, the blue QLEDs reach the optimal performance, exhibiting an EQEmax of 12.58%, which is more than sevenfold higher than that in the control device without encapsulation. This work provides design principles for realizing high efficiency in blue QLEDs with oxide electron-transporting layers (ETLs) and provides a new understanding of the mechanisms underlying positive aging in these devices and thus offers a new starting point for both fundamental investigations and practical applications.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article