Your browser doesn't support javascript.
loading
Nanoformulations based on collagenases loaded into halloysite/Veegum® clay minerals for potential pharmaceutical applications.
Massaro, Marina; Ghersi, Giulio; de Melo Barbosa, Raquel; Campora, Simona; Rigogliuso, Salvatrice; Sànchez-Espejo, Rita; Viseras-Iborra, César; Riela, Serena.
Afiliação
  • Massaro M; Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy.
  • Ghersi G; Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy. Electronic address: giulio.ghersi@unipa.it.
  • de Melo Barbosa R; University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain.
  • Campora S; Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy.
  • Rigogliuso S; Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy.
  • Sànchez-Espejo R; University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain.
  • Viseras-Iborra C; University of Granada, Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, 18071 Granada, Spain; Andalusian Institute of Earth Sciences, CSIC-UGR, 18100 Armilla, Granada, Spain.
  • Riela S; Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Parco d'Orleans II, Ed. 16-17, 90128 Palermo, Italy. Electronic address: serena.riela@unipa.it.
Colloids Surf B Biointerfaces ; 230: 113511, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37597494
The design and development of nanomaterials capable of penetrate cancer cells is fundamental when anticancer therapy is involved. The use of collagenase (Col) is useful since this enzyme can degrade collagen, mainly present in the tumor extracellular matrix. However, its use is often limited since collagenase suffers from inactivation and short half-life. Use of recombinant ultrapure collagenase or carrier systems for their delivery are among the strategies adopted to increase the enzyme stability. Herein, based on the more stability showed by recombinant enzymes and the possibility to use them in anticancer therapy, we propose a novel strategy to further increase their stability by using halloysite nanotubes (HNTs) as carrier. ColG and ColH were supramolecularly loaded onto HNTs and used as fillers for Veegum gels. The systems could be used for potential local administration of collagenases for solid tumor treatment. All techniques adopted for characterization showed that halloysite interacts with collagenases in different ways depending with the Col considered. Furthermore, the hydrogels showed a very slow release of the collagenases within 24 h. Finally, biological assays were performed by studying the digestion of a type-I collagen matrix highlighting that once released the Col still possessed some activity. Thus we developed carrier systems that could further increase the high recombinant collagenases stability, preventing their inactivation in future in vivo applications for potential local tumor treatment.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Colagenases / Minerais Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Colagenases / Minerais Idioma: En Ano de publicação: 2023 Tipo de documento: Article