Your browser doesn't support javascript.
loading
The sulfate assimilation and reduction of marine microalgae and the regulation of illumination.
Dai, Wen-Ying; Han, Lu; Li, Pei-Feng; Li, Qin-Dao; Xie, Li-Jun; Liu, Chun-Ying; Kong, Jun-Ru; Jia, Ru; Li, Dan-Yang; Yang, Gui-Peng.
Afiliação
  • Dai WY; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
  • Han L; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
  • Li PF; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
  • Li QD; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
  • Xie LJ; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
  • Liu CY; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Sc
  • Kong JR; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
  • Jia R; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
  • Li DY; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
  • Yang GP; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China; Laboratory for Marine Ecology and Environmental Sc
Mar Environ Res ; 191: 106156, 2023 Oct.
Article em En | MEDLINE | ID: mdl-37660481
To examine the sulfate assimilation and reduction process and the regulation of illumination, diatom Phaeodactylum tricornutum and dinoflagellate Amphidinium carterae were selected for continuous simulation incubation under different photon flux densities (PFDs) (54, 108 and 162 µmol photons m-2 s-1), and concentration variations of related sulfur compounds sulfate, dimethylsulfoniopropionate (DMSP), dimethylsulfide (DMS) and acrylic acid (AA) in the culture system were observed. The optimal PFD for the growth of two microalgae was 108 µmol photons m-2 s-1. However, the maximum sulfate absorption occurred at 162 µmol photons m-2 s-1 for P. tricornutum and at 54 µmol photons m-2 s-1 for A. carterae. With the increase of PFD, the release of DMSP by P. tricornutum decreased while A. carterae increased. The largest release amount of DMS was 0.59 ± 0.05 fmol cells-1 for P. tricornutum and 2.61 ± 0.89 fmol cells-1 for A. carterae under their optimum growth light condition. The sulfate uptake of P. tricornutum was inhibited by the addition of amino acids, cysteine had a greater inhibitory effect than methionine, and the absorption process was controlled by light. The intermediate products of sulfur metabolism had an up-control effect on the sulfate uptake process of P. tricornutum. However, the addition of amino acids had no obvious effect on the sulfate absorption of A. carterae.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diatomáceas / Microalgas Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Diatomáceas / Microalgas Idioma: En Ano de publicação: 2023 Tipo de documento: Article