Development and in-vivo validation of a portable phosphorescence lifetime-based fiber-optic oxygen sensor.
Sci Rep
; 13(1): 14782, 2023 09 07.
Article
em En
| MEDLINE
| ID: mdl-37679415
Oxygenation is a crucial indicator of tissue viability and function. Oxygen tension ([Formula: see text]), i.e. the amount of molecular oxygen present in the tissue is a direct result of supply (perfusion) and consumption. Thus, measurement of [Formula: see text] is an effective method to monitor tissue viability. However, tissue oximetry sensors commonly used in clinical practice instead rely on measuring oxygen saturation ([Formula: see text]), largely due to the lack of reliable, affordable [Formula: see text] sensing solutions. To address this issue we present a proof-of-concept design and validation of a low-cost, lifetime-based oxygen sensing fiber. The sensor consists of readily-available off-the shelf components such as a microcontroller, a light-emitting diode (LED), an avalanche photodiode (APD), a temperature sensor, as well as a bright in-house developed porphyrin molecule. The device was calibrated using a benchtop setup and evaluated in three in vivo animal models. Our findings show that the new device design in combination with the bright porphyrin has the potential to be a useful and accurate tool for measuring [Formula: see text] in tissue, while also highlighting some of the limitations and challenges of oxygen measurements in this context.
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Porfirinas
/
Tecnologia de Fibra Óptica
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article