Your browser doesn't support javascript.
loading
Retinoic acid-inducible gene-1 knockdown induces immature properties in dendritic cells and prolongs the survival time of allograft mice.
Li, Zhongqiu; Zhang, Xuzhi; Fu, Zongli; He, Wenjing; Gao, Yifang; Ma, Yi.
Afiliação
  • Li Z; Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangd
  • Zhang X; Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangd
  • Fu Z; Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangd
  • He W; Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangd
  • Gao Y; Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangd
  • Ma Y; Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangd
Gene ; 897: 148049, 2024 Mar 01.
Article em En | MEDLINE | ID: mdl-38043832
ABSTRACT

BACKGROUND:

The mature state of dendritic cells (DCs) determines their ability to regulate immune responses. Retinoic acid-inducible gene-1 (RIG-1) plays a critical role in DC activation and maturation. RIG-1 activation triggers mitogen-activated protein kinase and nuclear factor-kappa B signal transduction. In this study, we aimed to investigate the effects of inhibiting RIG-1 expression in DCs and its potential in inducing immune tolerance.

METHODS:

DCs were transduced with the recombinant lentiviral vector (Lv) to inhibit RIG-1 expression. A murine islet and skin transplantation model were constructed to find out whether DC-DDX58-RNAi could prolong allograft survival. The phenotypes of DCs and T-cells were analyzed using flow cytometry. Cytokines in serum were detected by the enzyme-linked immunosorbent assay. Protein levels were determined by Western blot.

RESULTS:

RIG-1-deficient DCs had low expression of costimulatory molecules and major histocompatibility complex and a strong phagocytic ability. DC-DDX58-RNAi induced regulatory T cell differentiation in the transplant recipient spleens. The DC-DDX58-RNAi-treated recipients showed satisfactory islet allograft function and longer survival time.

CONCLUSION:

Inhibition of RIG-1 with DDX58-RNAi prevented the activation and maturation of the DCs, affected T cell differentiation, protected the biological function of the allograft, and prolonged graft survival. These findings may have important therapeutic implications for new immunomodulatory regimens.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tretinoína / Linfócitos T Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Tretinoína / Linfócitos T Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article