Your browser doesn't support javascript.
loading
Improving XYG3-type doubly hybrid approximation using self-interaction corrected SCAN density and orbitals via the PZ-SIC framework: The xDH@SCAN(SIC) approach.
Bi, Sheng; Wang, Shirong; Zhang, Igor Ying; Xu, Xin.
Afiliação
  • Bi S; Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China.
  • Wang S; Research Center for Intelligent Supercomputing, Zhejiang Lab, Hangzhou 311100, People's Republic of China.
  • Zhang IY; Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China.
  • Xu X; Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China.
J Chem Phys ; 159(23)2023 Dec 21.
Article em En | MEDLINE | ID: mdl-38099549
ABSTRACT
XYG3-type doubly hybrid (xDH) approximations have gained widespread recognition for their accuracy in describing a diverse range of chemical and physical interactions. However, a recent study [Song et al., J. Phys. Chem. Lett. 12, 800-807 (2021)] has highlighted the limitation of xDH methods in calculating the dissociation of NaCl molecules. This issue has been related to the density and orbitals used for evaluating the energy in xDH methods, which are obtained from lower-rung hybrid density functional approximations (DFAs) and display substantial density errors in the dissociation limit. In this work, we systematically investigate the influence of density on several challenging datasets and find that xDH methods are less sensitive to density errors compared to semi-local and hybrid DFAs. Furthermore, we demonstrate that the self-interaction corrected SCAN density approach offers superior accuracy compared to the self-consistent SCAN density and Hartree-Fock density approaches, as evidenced by performing charge analysis on the dissociation of heterodimers, such as NaCl and LiF. Building on these insights, we propose a five-parameter xDH method using the SCAN density and orbitals corrected by the PZ-SIC scheme. This new xDH@SCAN(SIC) method provides a balanced and accurate description across a wide range of challenging systems.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article