Your browser doesn't support javascript.
loading
3D Quantum Anomalous Hall Effect in Magnetic Topological Insulator Trilayers of Hundred-Nanometer Thickness.
Zhao, Yi-Fan; Zhang, Ruoxi; Sun, Zi-Ting; Zhou, Ling-Jie; Zhuo, Deyi; Yan, Zi-Jie; Yi, Hemian; Wang, Ke; Chan, Moses H W; Liu, Chao-Xing; Law, K T; Chang, Cui-Zu.
Afiliação
  • Zhao YF; Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
  • Zhang R; Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
  • Sun ZT; Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China.
  • Zhou LJ; Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
  • Zhuo D; Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
  • Yan ZJ; Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
  • Yi H; Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
  • Wang K; Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA.
  • Chan MHW; Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
  • Liu CX; Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
  • Law KT; Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, 999077, China.
  • Chang CZ; Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
Adv Mater ; 36(13): e2310249, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38118065
ABSTRACT
Magnetic topological states refer to a class of exotic phases in magnetic materials with the non-trivial topological property determined by magnetic spin configurations. An example of such states is the quantum anomalous Hall (QAH) state, which is a zero magnetic field manifestation of the quantum Hall effect. Current research in this direction focuses on QAH insulators with a thickness of less than 10 nm. Here, molecular beam epitaxy (MBE) is employed to synthesize magnetic TI trilayers with a thickness of up to ≈106 nm. It is found that these samples exhibit well-quantized Hall resistance and vanishing longitudinal resistance at zero magnetic field. By varying the magnetic dopants, gate voltages, temperature, and external magnetic fields, the properties of these thick QAH insulators are examined and the robustness of the 3D QAH effect is demonstrated. The realization of the well-quantized 3D QAH effect indicates that the nonchiral side surface states of the thick magnetic TI trilayers are gapped and thus do not affect the QAH quantization. The 3D QAH insulators of hundred-nanometer thickness provide a promising platform for the exploration of fundamental physics, including axion physics and image magnetic monopole, and the advancement of electronic and spintronic devices to circumvent Moore's law.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article