Your browser doesn't support javascript.
loading
Exploring the Role of Wnt Ligands in Osteogenic Differentiation of Human Periodontal Ligament Stem Cells.
Zhang, Xiao; Lin, Hanrui; Zheng, Da-Li; Lu, You-Guang; Zou, Yuchun; Su, Bohua.
Afiliação
  • Zhang X; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
  • Lin H; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
  • Zheng DL; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
  • Lu YG; Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
  • Zou Y; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
  • Su B; Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
Clin Oral Investig ; 28(1): 64, 2023 Dec 30.
Article em En | MEDLINE | ID: mdl-38158464
ABSTRACT

OBJECTIVES:

This study aimed to investigate the functions of 19 types of Wnt ligands during the process of osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs), with particular attention to WNT3A and WNT4. MATERIALS AND

METHODS:

The expression levels of 19 types of Wnt ligands were examined using real-time quantitative polymerase chain reaction (real-time qPCR) during hPDLSCs osteogenic differentiation at 7, 10, and 14 days. Knockdown of WNT3A and WNT4 expression was achieved using adenovirus vectors, and conditioned medium derived from WNT3A and WNT4 overexpression plasmids was employed to investigate their roles in hPDLSCs osteogenesis. Osteogenic-specific genes were analyzed using real-time qPCR. Alkaline phosphatase (ALP) and alizarin red S activities and staining were employed to assess hPDLSCs' osteogenic differentiation ability.

RESULTS:

During hPDLSCs osteogenic differentiation, the expression of 19 types of Wnt ligands varied, with WNT3A and WNT4 showing significant upregulation. Inhibiting WNT3A and WNT4 expression hindered hPDLSCs' osteogenic capacity. Conditioned medium of WNT3A promoted early osteogenic differentiation, while WNT4 facilitated late osteogenesis slightly.

CONCLUSION:

Wnt ligands, particularly WNT3A and WNT4, play an important role in hPDLSCs' osteogenic differentiation, highlighting their potential as promoters of osteogenesis. CLINICAL RELEVANCE Given the challenging nature of alveolar bone regeneration, therapeutic strategies that target WNT3A and WNT4 signaling pathways offer promising opportunities. Additionally, innovative gene therapy approaches aimed at regulating of WNT3A and WNT4 expression hold potential for improving alveolar bone regeneration outcomes.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteogênese / Ligamento Periodontal Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteogênese / Ligamento Periodontal Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article