Your browser doesn't support javascript.
loading
Bimetallic mutual-doping magnetic aerogels for iodine reduction capture and immobilization.
Zhou, Xin-Yu; Chen, Kai-Wei; Gu, Ao-Tian; Yun, Shan; Mao, Ping; Yang, Yi; Chen, Jing.
Afiliação
  • Zhou XY; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory
  • Chen KW; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Gu AT; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
  • Yun S; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
  • Mao P; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
  • Yang Y; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laborato
  • Chen J; National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, School of Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China. Electronic address: chenjing6910@163.c
J Colloid Interface Sci ; 660: 1048-1057, 2024 Apr 15.
Article em En | MEDLINE | ID: mdl-38220495
ABSTRACT
Adsorption is considered to be one of the most effective methods to remove radioiodine from the solution. However, developing highly efficient adsorbents and the rapid recovery of the used adsorbents is still a challenge. Here, a series of Cu/Fe3O4 bimetallic mutual-doping magnetic aerogels (Cu/Fe3O4-BMMA) were synthesized. Based on the in-situ bimetallic co-gelation process, the high dispersion of Cu in the aerogel was realized, providing conditions for the efficient elimination of I2. The Fe3+ in the initial gel was reduced to magnetic Fe3O4 during the preparation process, allowing for the quick recovery of the adsorbent through the application of a magnetic field. The adsorption experiments showed that Cu/Fe3O4-BMMA has good I2 adsorption capacity (631.3 mg/g) and fast capture kinetics (equilibrium time < 30 min). In addition, Cu/Fe3O4-BMMA was able to effectively remove trace I2 in the solution from ppm level (1.0 ppm) down to ppb level (≤30 ppb). The adsorbed I2 was converted into stable CuI, avoiding secondary pollution due to desorption. Overall, this study provides a potentially efficient iodine capture material for long-term decay storage of radioactive iodine.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article