Your browser doesn't support javascript.
loading
20(R)-ginsenoside Rg3 attenuates cerebral ischemia-reperfusion injury by mitigating mitochondrial oxidative stress via the Nrf2/HO-1 signaling pathway.
Chen, Deyun; Duan, Hengqian; Zou, Cheng; Yang, Renhua; Zhang, Xiaochao; Sun, Yan; Luo, Xingwei; Lv, Di; Chen, Peng; Shen, Zhiqiang; He, Bo.
Afiliação
  • Chen D; School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.
  • Duan H; College of Food, Drugs, and Health, Yunnan Vocational and Technical College of Agriculture, Kunming, China.
  • Zou C; School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.
  • Yang R; School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.
  • Zhang X; School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.
  • Sun Y; School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.
  • Luo X; School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.
  • Lv D; School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.
  • Chen P; School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.
  • Shen Z; School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.
  • He B; School of Pharmaceutical Sciences, Yunnan Key Laboratory of Pharmacology for Natural Products/College of Modern Biomedical Industry, NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, China.
Phytother Res ; 38(3): 1462-1477, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38246696
ABSTRACT
Reducing mitochondrial oxidative stress has become an important strategy to prevent neuronal death in ischemic stroke. Previous studies have shown that 20(R)-ginsenoside Rg3 can significantly improve behavioral abnormalities, reduce infarct size, and decrease the number of apoptotic neurons in cerebral ischemia/reperfusion injury rats. However, it remains unclear whether 20(R)-ginsenoside Rg3 can inhibit mitochondrial oxidative stress in ischemic stroke and the potential molecular mechanism. In this study, we found that 20(R)-ginsenoside Rg3 notably inhibited mitochondrial oxidative stress in middle cerebral artery occlusion/reperfusion (MCAO/R) rats and maintained the stability of mitochondrial structure and function. Treatment with 20(R)-ginsenoside Rg3 also decreased the levels of mitochondrial fission proteins (Drp1 and Fis1) and increased the levels of fusion proteins (Opa1, Mfn1, and Mfn2) in MCAO/R rats. Furthermore, we found that 20(R)-ginsenoside Rg3 promoted nuclear aggregation of nuclear factor erythroid2-related factor 2 (Nrf2) but did not affect Kelch-like ECH-associated protein-1 (Keap1), resulting in the downstream expression of antioxidants. In in vitro oxygen-glucose deprivation/reperfusion stroke models, the results of PC12 cells treated with 20(R)-ginsenoside Rg3 were consistent with animal experiments. After transfection with Nrf2 short interfering RNA (siRNA), the protective effect of 20(R)-ginsenoside Rg3 on PC12 cells was reversed. In conclusion, the inhibition of mitochondrial oxidative stress plays a vital position in the anti-cerebral ischemia-reperfusion injury of 20(R)-ginsenoside Rg3, and its neuroprotective mechanism is related to the activation of the nuclear factor erythroid2-related factor 2/heme oxygenase 1 signaling pathway.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Isquemia Encefálica / Fármacos Neuroprotetores / Ginsenosídeos / AVC Isquêmico Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão / Isquemia Encefálica / Fármacos Neuroprotetores / Ginsenosídeos / AVC Isquêmico Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article