Your browser doesn't support javascript.
loading
A novel "on-off-on" electrochemiluminescence strategy based on RNA cleavage propelled signal amplification and resonance energy transfer for Pb2+ detection.
Gong, Qinghua; Xu, Xuejiao; Cheng, Yanmei; Wang, Xianhong; Liu, Dandan; Nie, Guangming.
Afiliação
  • Gong Q; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
  • Xu X; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
  • Cheng Y; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
  • Wang X; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
  • Liu D; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address: liudandan0305@1
  • Nie G; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, State Key Laboratory Base of Eco-chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China. Electronic address: gnie@qust.edu.c
Anal Chim Acta ; 1290: 342218, 2024 Feb 15.
Article em En | MEDLINE | ID: mdl-38246744
ABSTRACT

BACKGROUND:

Lead (Pb) is one of the most toxic heavy-metal pollutants. Additionally, lead ions (Pb2+) can accumulate in the human body through the food chain, causing irreversible damage through organ damage and system disorders. In the past few years, the detection of Pb2+ has mainly relied on instrumental methods such as atomic absorption spectroscopy (AAS) and inductively coupled plasma mass spectrometry (ICP-MS). Nonetheless, these techniques are complicated in terms of equipment and procedures, along with being time-intensive and expensive in terms of detection. These drawbacks have limited their wide application. Hence, there is a pressing need to develop detection techniques for Pb2+ that are not only cost-efficient but also highly sensitive and specific.

RESULTS:

A novel "on-off-on" electrochemiluminescence (ECL) sensor for detecting Pb2+ was developed based on the resonance energy transfer (RET) effect between AuNPs and boron nitride quantum dots (BN QDs) and the recognition of Pb2+ by DNAzyme along with the cleavage reaction of the substrate chain. Poly(6-carboxyindole)/stannic sulfide (P6ICA/SnS2) nanocomposite was employed as a co-reaction accelerator to consequently facilitate the production of intermediate SO4•-. This effective enhancement of the reaction led to an improved ECL intensity of BN QDs and enabled the sensor platform to exhibit a higher original ECL response. Benefiting from the combination of the DNAzyme signal amplification strategy with the "on-off-on" design, the ECL sensor showed satisfactory selectivity, good stability, and high sensitivity. This ECL sensor exhibited a linear detection range (LDR) of 10-12-10-5 M and a limit of detection (LOD) of 2.6 × 10-13 M.

SIGNIFICANCE:

In the present work, an "on-off-on" ECL sensor is constructed based on RET effect for ultrasensitive detection of Pb2+. P6ICA/SnS2 was investigated as the co-reaction accelerator in this sensor. Moreover, this ECL sensor exhibited excellent analytical capability for detecting Pb2+ in actual water samples, providing a method for detecting other heavy metal ions as well.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA Catalítico / Nanopartículas Metálicas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA Catalítico / Nanopartículas Metálicas Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article