Your browser doesn't support javascript.
loading
Interindividual variability in cold-pressor pain sensitivity is not explained by peripheral vascular responding and generalizes to a C-nociceptor-specific pain phenotype.
Martel, Richard D; Papafragou, Georgios; Weigand, Sylvia; Rolke, Roman; Prawitt, Dirk; Birklein, Frank; Treede, Rolf-Detlef; Magerl, Walter.
Afiliação
  • Martel RD; Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Martel is now with the Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany. Papafra
  • Papafragou G; Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Martel is now with the Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany. Papafra
  • Weigand S; Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Martel is now with the Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany. Papafra
  • Rolke R; Departments of Neurology and.
  • Prawitt D; Pediatric Medicine, Medical Center, Johannes Gutenberg University, Mainz, Germany.
  • Birklein F; Departments of Neurology and.
  • Treede RD; Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Martel is now with the Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany. Papafra
  • Magerl W; Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany. Martel is now with the Department of Pediatric Surgery, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany. Papafra
Pain ; 165(3): e1-e14, 2024 Mar 01.
Article em En | MEDLINE | ID: mdl-38284423
ABSTRACT
ABSTRACT Pain sensitivity of healthy subjects in the cold-pressor (CP) test was proposed to be dichotomously distributed and to represent a pain sensitivity trait. Still, it has not been systematically explored which factors influence this pain sensitivity readout. The aim of this study was to distinguish potential contributions of local tissue-related factors such as perfusion and thermoregulation or gain settings in nociceptive systems. Cold-pressor-sensitive and CP-insensitive students screened from a medical student laboratory course were recruited for a CP retest with additional cardiovascular and bilateral local vascular monitoring. In addition, comprehensive quantitative sensory testing according to Deutscher Forschungsverbund Neuropathischer Schmerz standards and a sustained pinch test were performed. Cold pressor was reproducible across sessions (Cohen kappa 0.61 ± 0.14, P < 0.005). At 30 seconds in ice water, CP-sensitive subjects exhibited not only more pain (78.6 ± 26.3 vs 29.5 ± 17.5, P < 0.0001) but also significantly stronger increases in mean arterial blood pressure (12.6 ± 9.3 vs 5.6 ± 8.1 mm Hg, P < 0.05) and heart rate (15.0 ± 8.2 vs 7.1 ± 6.2 bpm, P < 0.005), and lower baroreflex sensitivity, but not local or vasoconstrictor reflex-mediated microcirculatory responses. Cold-pressor-sensitive subjects exhibited significantly lower pain thresholds also for cold, heat, and blunt pressure, and enhanced pain summation, but no significant differences in Aδ-nociceptor-mediated punctate mechanical pain. In conclusion, differences in nociceptive signal processing drove systemic cardiovascular responses. Baroreceptor activation suppressed pain and cardiovascular responses more efficiently in CP-insensitive subjects. Cold-pressor sensitivity generalized to a pain trait of C-fiber-mediated nociceptive channels, which was independent of local thermal and vascular changes in the ice-water-exposed hand. Thus, the C-fiber pain trait reflects gain setting of the nociceptive system.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nociceptores / Limiar da Dor Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Nociceptores / Limiar da Dor Tipo de estudo: Diagnostic_studies Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article