Your browser doesn't support javascript.
loading
Ambient particulate matter exposure induces ferroptosis in hippocampal cells through the GSK3B/Nrf2/GPX4 pathway.
Gui, Jianxiong; Wang, Lingman; Liu, Jie; Luo, Hanyu; Huang, Dishu; Yang, Xiaoyue; Song, Honghong; Han, Ziyao; Meng, Linxue; Ding, Ran; Yang, Jiaxin; Jiang, Li.
Afiliação
  • Gui J; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Wang L; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Liu J; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Luo H; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Huang D; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Yang X; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Song H; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Han Z; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Meng L; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Ding R; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Yang J; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
  • Jiang L; Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqi
Free Radic Biol Med ; 213: 359-370, 2024 03.
Article em En | MEDLINE | ID: mdl-38290604
ABSTRACT
Epidemiological studies have established a robust correlation between exposure to ambient particulate matter (PM) and various neurological disorders, with dysregulation of intracellular redox processes and cell death being key mechanisms involved. Ferroptosis, a cell death form characterized by iron-dependent lipid peroxidation and disruption of antioxidant defenses, may be involved in the neurotoxic effects of PM exposure. However, the relationship between PM-induced neurotoxicity and ferroptosis in nerve cells remains to be elucidated. In this study, we utilized a rat model (exposed to PM at a dose of 10 mg/kg body weight per day for 4 weeks) and an HT-22 cell model (exposed to PM at concentrations of 50, 100, and 200 µg/mL for 24 h) to investigate the potential induction of ferroptosis by PM exposure. Furthermore, RNA sequencing analysis was employed to identify hub genes that potentially contribute to the process of ferroptosis, which was subsequently validated through in vivo and in vitro experiments. The results revealed that PM exposure increased MDA content and Fe2+ levels, and decreased SOD activity and GSH/GSSG ratio in rat hippocampal and HT-22 cells. Through RNA sequencing analysis, bioinformatics analysis, and RT-qPCR experiments, we identified GSK3B as a possible hub gene involved in ferroptosis. Subsequent investigations demonstrated that PM exposure increased GSK3B levels and decreased Nrf2, and GPX4 levels in vivo and in vitro. Furthermore, treatment with LY2090314, a specific inhibitor of GSK3B, was found to mitigate the PM-induced elevation of MDA and ROS and restore SOD activity and GSH/GSSG ratio. The LY2090314 treatment promoted the upregulation of Nrf2 and GPX4 and facilitated the nuclear translocation of Nrf2 in HT-22 cells. Moreover, treatment with LY2090314 resulted in the upregulation of Nrf2 and GPX4, along with the facilitation of nuclear translocation of Nrf2. This study suggested that PM-induced ferroptosis in hippocampal cells may be via the GSK3B/Nrf2/GPX4 pathway.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndromes Neurotóxicas / Ferroptose / Compostos Heterocíclicos com 3 Anéis / Maleimidas Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Síndromes Neurotóxicas / Ferroptose / Compostos Heterocíclicos com 3 Anéis / Maleimidas Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article