Your browser doesn't support javascript.
loading
Versatile Polymerization-Induced Emission Polymers from Barbier Polymerization of Cinnamic Esters with Tunable Emission.
Sun, Xiao-Li; Chen, Yu-Jiao; Cai, Hua-Wen; Gu, Xi-Yao; Li, De-Shan; Wu, Liang-Tao; Wan, Wen-Ming.
Afiliação
  • Sun XL; College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China.
  • Chen YJ; College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China.
  • Cai HW; College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China.
  • Gu XY; College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China.
  • Li DS; State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou, 350002, P.R. of Chin
  • Wu LT; College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China.
  • Wan WM; College of Environmental and Resource Sciences, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P.R. of China.
Chemistry ; 30(20): e202400045, 2024 Apr 05.
Article em En | MEDLINE | ID: mdl-38298110
ABSTRACT
Cinnamic ester is a common and abundant chemical substance, which can be extracted from natural plants. Compared with traditional esters, cinnamic ester contains α,ß-unsaturated carbonyl structure with multiple reactive sites, resulting in more abundant reactivities and chemical structures. Here, a versatile polymerization-induced emission (PIE) is successfully demonstrated through Barbier polymerization of cinnamic ester. Attributed to its abundant reactivities of α,ß-unsaturated carbonyl structure, Barbier polymerization of cinnamic esters with different organodihalides gives polyalcohol and polyketone via 1,2-addition and 1,4-addition, respectively, which is also confirmed by small molecular model reactions. Meanwhile, these organodihalides dependant polyalcohol and polyketone exhibit different non-traditional intrinsic luminescence (NTIL) from aggregation-induced emission (AIE) type to aggregation-caused quenching (ACQ) type, where novel PIE luminogens (PIEgens) are revealed. Further potential applications in explosive detection are carried out, where it achieves TNT detection sensitivity at ppm level in solution and ng level on the test paper. This work therefore expands the structure and functionality libraries of monomer, polymer and NTIL, which might cause inspirations to different fields including polymer chemistry, NTIL, AIE and PIE.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article