PI(4,5)P 2 role in Transverse-tubule membrane formation and muscle function.
bioRxiv
; 2024 Jan 31.
Article
em En
| MEDLINE
| ID: mdl-38352484
ABSTRACT
Transverse (T)-tubules - vast, tubulated domains of the muscle plasma membrane - are critical to maintain healthy skeletal and heart contractions. How the intricate T-tubule membranes are formed is not well understood, with challenges to systematically interrogate in muscle. We established the use of intact Drosophila larval body wall muscles as an ideal system to discover mechanisms that sculpt and maintain the T-tubule membrane network. A muscle-targeted genetic screen identified specific phosphoinositide lipid regulators necessary for T-tubule organization and muscle function. We show that a PI4KIIIα - Skittles/PIP5K pathway is needed for T-tubule localized PI(4)P to PI(4,5)P 2 synthesis, T-tubule organization, calcium regulation, and muscle and heart rate functions. Muscles deficient for PI4KIIIα or Amphiphysin , the homolog of human BIN1 , similarly exhibited specific loss of transversal T-tubule membranes and dyad junctions, yet retained longitudinal membranes and the associated dyads. Our results highlight the power of live muscle studies, uncovering distinct mechanisms and functions for sub-compartments of the T-tubule network relevant to human myopathy. Summary:
T-tubules - vast, tubulated domains of the muscle plasma membrane - are critical to maintain skeletal and heart contractions. Fujita et al . establish genetic screens and assays in intact Drosophila muscles that uncover PI(4,5)P 2 regulation critical for T-tubule maintenance and function. KeyFindings:
PI4KIIIα is required for muscle T-tubule formation and larval mobility. A PI4KIIIα-Sktl pathway promotes PI(4)P and PI(4,5)P 2 function at T-tubules. PI4KIIIα is necessary for calcium dynamics and transversal but not longitudinal dyads. Disruption of PI(4,5)P 2 function in fly heart leads to fragmented T-tubules and abnormal heart rate.
Texto completo:
1
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article