Your browser doesn't support javascript.
loading
Black goes green: single-step solvent exchange for sol-gel synthesis of carbon spherogels as high-performance supercapacitor electrodes.
Salihovic, Miralem; Pameté, Emmanuel; Arnold, Stefanie; Sulejmani, Irena; Bartschmid, Theresa; Hüsing, Nicola; Fritz-Popovski, Gerhard; Dun, Chaochao; Urban, Jeffrey J; Presser, Volker; Elsaesser, Michael S.
Afiliação
  • Salihovic M; Chemistry and Physics of Materials, University of Salzburg 5020 Salzburg Austria michael.elsaesser@sbg.ac.at.
  • Pameté E; INM - Leibniz Institute for New Materials, Campus D2 2 66123 Saarbrücken Germany volker.presser@leibniz-inm.de.
  • Arnold S; INM - Leibniz Institute for New Materials, Campus D2 2 66123 Saarbrücken Germany volker.presser@leibniz-inm.de.
  • Sulejmani I; Department of Materials Science & Engineering, Saarland University, Campus D2 2 66123 Saarbrücken Germany.
  • Bartschmid T; Chemistry and Physics of Materials, University of Salzburg 5020 Salzburg Austria michael.elsaesser@sbg.ac.at.
  • Hüsing N; Chemistry and Physics of Materials, University of Salzburg 5020 Salzburg Austria michael.elsaesser@sbg.ac.at.
  • Fritz-Popovski G; Chemistry and Physics of Materials, University of Salzburg 5020 Salzburg Austria michael.elsaesser@sbg.ac.at.
  • Dun C; Institute of Physics, Montanuniversitaet Leoben 8700 Leoben Austria.
  • Urban JJ; The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley Berkeley CA 94720 USA.
  • Presser V; The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley Berkeley CA 94720 USA.
  • Elsaesser MS; INM - Leibniz Institute for New Materials, Campus D2 2 66123 Saarbrücken Germany volker.presser@leibniz-inm.de.
Energy Adv ; 3(2): 482-494, 2024 Feb 15.
Article em En | MEDLINE | ID: mdl-38371916
ABSTRACT
Nanoporous carbon materials with customized structural features enable sustainable and electrochemical applications through improved performance and efficiency. Carbon spherogels (highly porous carbon aerogel materials consisting of an assembly of hollow carbon nanosphere units with uniform diameters) are desirable candidates as they combine exceptional electrical conductivity, bespoke shell porosity, tunability of the shell thickness, and a high surface area. Herein, we introduce a novel and more environmentally friendly sol-gel synthesis of resorcinol-formaldehyde (RF) templated by polystyrene spheres, forming carbon spherogels in an organic solvent. By tailoring the molar ratio of resorcinol to isopropyl alcohol (R/IPA) and the concentration of polystyrene, the appropriate synthesis conditions were identified to produce carbon spherogels with adjustable wall thicknesses. A single-step solvent exchange process from deionized water to isopropyl alcohol reduces surface tension within the porous gel network, making this approach significantly time and cost-effective. The lower surface tension of IPA enables solvent extraction under ambient conditions, allowing for direct carbonization of RF gels while maintaining a specific surface area loss of less than 20% compared to supercritically dried counterparts. The specific surface areas obtained after physical activation with carbon dioxide are 2300-3600 m2 g-1. Transmission and scanning electron microscopy verify the uniform, hollow carbon sphere network morphology. Specifically, those carbon spherogels are high-performing electrodes for energy storage in a supercapacitor setup featuring a specific capacitance of up to 204 F g-1 at 200 mA g-1 using 1 M potassium hydroxide (KOH) solution as the electrolyte.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article