Your browser doesn't support javascript.
loading
Phase Diagrams of Anthracene Derivatives in Pyridinium Ionic Liquids.
Watanabe, Satoshi; Ono, Keigo; Nakayama, Rinsuke; Tajiri, Kaho; Inouchi, Shun; Matsuo, Takumi; Kunitake, Masashi; Hayashi, Shotaro.
Afiliação
  • Watanabe S; Division of Applied Chemistry and Biochemistry, Naitonal Institute of Technology, Tomakomai College, Nishikioka 443, Tomakomai, Hokkaido, 059-1275, Japan.
  • Ono K; Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto, 860-8555, Japan.
  • Nakayama R; Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto, 860-8555, Japan.
  • Tajiri K; Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto, 860-8555, Japan.
  • Inouchi S; Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto City, Kumamoto, 860-8555, Japan.
  • Matsuo T; Research Institute, Kochi University of Technology, Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan.
  • Kunitake M; Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto City, Kumamoto, 860-8555, Japan.
  • Hayashi S; Research Institute, Kochi University of Technology, Miyanokuchi, Tosayamada, Kami, Kochi, 782-8502, Japan.
Chemphyschem ; 25(11): e202300867, 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38514906
ABSTRACT
Crystal engineering for single crystallization of π-conjugated molecules has attracted much attention because of their electronic, photonic, and mechanical properties. However, reproducibility is a problem in conventional printing techniques because control of solvent evaporation is difficult. We investigated the phase diagrams of two anthracene derivatives in synthesized ionic liquids for non-volatile crystal engineering to determine the critical points for nucleation and crystal growth. Anthracene and 9,10-dibromoanthracene were used as representative π-conjugated molecules that form crystal structures with different packing types. Ionic liquids with an alkylpyridinium cation and bis(fluorosulfonyl)amide were good solvents for the anthracene derivatives from ca. 0 °C to 200 °C. The solubilities (critical points for crystal growth) of the anthracene derivatives in the ionic liquids reached the 100 mM level, which is similar to those in organic solvents. Ionic liquids with phenyl and octyl groups tended to show high-temperature dependence (a high dissolution entropy) with 9,10-dibromoanthracene. The precipitation temperature (critical point for crystal nucleation) at each 9,10-dibromoanthracene concentration was lower than the dissolution temperature. The differences between the dissolution and precipitation temperatures (supersaturated region) in the ionic liquids were greater than those in an organic solvent.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article