Your browser doesn't support javascript.
loading
Single-embryo transcriptomic atlas of oxygen response reveals the critical role of HIF-1α in prompting embryonic zygotic genome activation.
Yao, Fusheng; Chu, Meiqiang; Xi, Guangyin; Dai, Jiage; Wang, Zhaochen; Hao, Jia; Yang, Qianying; Wang, Wenjing; Tang, Yawen; Zhang, Jingyu; Yue, Yuan; Wang, Yue; Xu, Yefen; Zhao, Wei; Ma, Lizhu; Liu, Juan; Zhang, Zhenni; Tian, Jianhui; An, Lei.
Afiliação
  • Yao F; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Chu M; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Xi G; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Dai J; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Wang Z; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Hao J; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Yang Q; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Wang W; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Tang Y; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Zhang J; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Yue Y; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Wang Y; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Xu Y; Animal Science Department, Tibet Agricultural and Animal Husbandry College, 100 Yucai Road, Bayi District, Tibet, 860000, Nyingchi, PR China.
  • Zhao W; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Ma L; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Liu J; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Zhang Z; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China.
  • Tian J; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China. Electro
  • An L; National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, No.2 Yuanmingyuan West Road, Beijing, 100193, PR China. Electro
Redox Biol ; 72: 103147, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38593632
ABSTRACT
Adaptive response to physiological oxygen levels (physO2; 5% O2) enables embryonic survival in a low-oxygen developmental environment. However, the mechanism underlying the role of physO2 in supporting preimplantation development, remains elusive. Here, we systematically studied oxygen responses of hallmark events in preimplantation development. Focusing on impeded transcriptional upregulation under atmospheric oxygen levels (atmosO2; 20% O2) during the 2-cell stage, we functionally identified a novel role of HIF-1α in promoting major zygotic genome activation by serving as an oxygen-sensitive transcription factor. Moreover, during blastocyst formation, atmosO2 impeded H3K4me3 and H3K27me3 deposition by deregulating histone-lysine methyltransferases, thus impairing X-chromosome inactivation in blastocysts. In addition, we found atmosO2 impedes metabolic shift to glycolysis before blastocyst formation, thus resulting a low-level histone lactylation deposition. Notably, we also reported an increased sex-dimorphic oxygen response of embryos upon preimplantation development. Together, focusing on genetic and epigenetic events that are essential for embryonic survival and development, the present study advances current knowledge of embryonic adaptive responses to physO2, and provides novel insight into mechanism underlying irreversibly impaired developmental potential due to a short-term atmosO2 exposure.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zigoto / Regulação da Expressão Gênica no Desenvolvimento / Subunidade alfa do Fator 1 Induzível por Hipóxia Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Zigoto / Regulação da Expressão Gênica no Desenvolvimento / Subunidade alfa do Fator 1 Induzível por Hipóxia Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article