Your browser doesn't support javascript.
loading
Control of astrocytic Ca2+ signaling by nitric oxide-dependent S-nitrosylation of Ca2+ homeostasis modulator 1 channels.
Puebla, Mariela; Muñoz, Manuel F; Lillo, Mauricio A; Contreras, Jorge E; Figueroa, Xavier F.
Afiliação
  • Puebla M; Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
  • Muñoz MF; Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 8330025, Santiago, Chile.
  • Lillo MA; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.
  • Contreras JE; Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
  • Figueroa XF; Department of Physiology and Membrane Biology, University of California Davis, Davis, CA, USA.
Biol Res ; 57(1): 19, 2024 Apr 30.
Article em En | MEDLINE | ID: mdl-38689353
ABSTRACT

BACKGROUND:

Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex.

RESULTS:

Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling.

CONCLUSIONS:

Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Astrócitos / Sinalização do Cálcio / Óxido Nítrico Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Astrócitos / Sinalização do Cálcio / Óxido Nítrico Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article