Your browser doesn't support javascript.
loading
Intelligent Cell Profiling and Precision Release: Multimolecular Marker-Activated Transmembrane DNA Computing Nanosystem.
Zhang, Yuxi; Yang, Qian; Zhu, Lina; Lu, Xinyi; Xin, Wenjuan; Ding, Jiani; Wang, Shumin; Tang, Zijie; Fan, Gao-Chao; Cen, Yao; Song, Zhi-Ling; Luo, Xiliang.
Afiliação
  • Zhang Y; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Yang Q; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Zhu L; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Lu X; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Xin W; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Ding J; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Wang S; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Tang Z; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Fan GC; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Cen Y; School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
  • Song ZL; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Luo X; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
Anal Chem ; 96(19): 7747-7755, 2024 05 14.
Article em En | MEDLINE | ID: mdl-38691774
ABSTRACT
Accurate classification of tumor cells is of importance for cancer diagnosis and further therapy. In this study, we develop multimolecular marker-activated transmembrane DNA computing systems (MTD). Employing the cell membrane as a native gate, the MTD system enables direct signal output following simple spatial events of "transmembrane" and "in-cell target encounter", bypassing the need of multistep signal conversion. The MTD system comprises two intelligent nanorobots capable of independently sensing three molecular markers (MUC1, EpCAM, and miR-21), resulting in comprehensive analysis. Our AND-AND logic-gated system (MTDAND-AND) demonstrates exceptional specificity, allowing targeted release of drug-DNA specifically in MCF-7 cells. Furthermore, the transformed OR-AND logic-gated system (MTDOR-AND) exhibits broader adaptability, facilitating the release of drug-DNA in three positive cancer cell lines (MCF-7, HeLa, and HepG2). Importantly, MTDAND-AND and MTDOR-AND, while possessing distinct personalized therapeutic potential, share the ability of outputting three imaging signals without any intermediate conversion steps. This feature ensures precise classification cross diverse cells (MCF-7, HeLa, HepG2, and MCF-10A), even in mixed populations. This study provides a straightforward yet effective solution to augment the versatility and precision of DNA computing systems, advancing their potential applications in biomedical diagnostic and therapeutic research.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / MicroRNAs / Molécula de Adesão da Célula Epitelial Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: DNA / MicroRNAs / Molécula de Adesão da Célula Epitelial Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article