Your browser doesn't support javascript.
loading
Large Fermi surface in pristine kagome metal CsV3Sb5 and enhanced quasiparticle effective masses.
Zhang, Wei; Poon, Tsz Fung; Tsang, Chun Wai; Wang, Wenyan; Liu, X; Xie, J; Lam, S T; Wang, Shanmin; Lai, Kwing To; Pourret, A; Seyfarth, G; Knebel, G; Yu, Wing Chi; Goh, Swee K.
Afiliação
  • Zhang W; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  • Poon TF; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  • Tsang CW; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  • Wang W; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  • Liu X; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  • Xie J; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  • Lam ST; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  • Wang S; Department of Physics, Southern University of Science and Technology, Shenzhen, Guangdong 518005, China.
  • Lai KT; Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  • Pourret A; Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
  • Seyfarth G; Université Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, Institut polytechnique de Grenoble, Institut de recherche interdisciplinaire de Grenoble, Laboratoire Photonique Electronique et Ingénierie Quantiques, Grenoble 38000, France.
  • Knebel G; Laboratoire National des Champs Magnétiques Intenses, Université Grenoble Alpes, Grenoble 38000, France.
  • Yu WC; Laboratoire National des Champs Magnétiques Intenses, Centre National de la Recherche Scientifique, Université Paul Sabatier Toulouse 3, Institut National des Sciences Appliquées Toulouse, European Magnetic Field Laboratory, Grenoble 38000, France.
  • Goh SK; Université Grenoble Alpes, Commissariat à l'énergie atomique et aux énergies alternatives, Institut polytechnique de Grenoble, Institut de recherche interdisciplinaire de Grenoble, Laboratoire Photonique Electronique et Ingénierie Quantiques, Grenoble 38000, France.
Proc Natl Acad Sci U S A ; 121(21): e2322270121, 2024 May 21.
Article em En | MEDLINE | ID: mdl-38753515
ABSTRACT
The kagome metal CsV[Formula see text]Sb[Formula see text] is an ideal platform to study the interplay between topology and electron correlation. To understand the fermiology of CsV[Formula see text]Sb[Formula see text], intensive quantum oscillation (QO) studies at ambient pressure have been conducted. However, due to the Fermi surface reconstruction by the complicated charge density wave (CDW) order, the QO spectrum is exceedingly complex, hindering a complete understanding of the fermiology. Here, we directly map the Fermi surface of the pristine CsV[Formula see text]Sb[Formula see text] by measuring Shubnikov-de Haas QOs up to 29 T under pressure, where the CDW order is completely suppressed. The QO spectrum of the pristine CsV[Formula see text]Sb[Formula see text] is significantly simpler than the one in the CDW phase, and the detected oscillation frequencies agree well with our density functional theory calculations. In particular, a frequency as large as 8,200 T is detected. Pressure-dependent QO studies further reveal a weak but noticeable enhancement of the quasiparticle effective masses on approaching the critical pressure where the CDW order disappears, hinting at the presence of quantum fluctuations. Our high-pressure QO results reveal the large, unreconstructed Fermi surface of CsV[Formula see text]Sb[Formula see text], paving the way to understanding the parent state of this intriguing metal in which the electrons can be organized into different ordered states.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article