Experimental Virtual Distillation of Entanglement and Coherence.
Phys Rev Lett
; 132(18): 180201, 2024 May 03.
Article
em En
| MEDLINE
| ID: mdl-38759173
ABSTRACT
Noise is, in general, inevitable and detrimental to practical and useful quantum communication and computation. Under the resource theory framework, resource distillation serves as a generic tool to overcome the effect of noise. Yet, conventional resource distillation protocols generally require operations on multiple copies of resource states, and strong limitations exist that restrict their practical utilities. Recently, by relaxing the setting of resource distillation to only approximating the measurement statistics instead of the quantum state, a resource-frugal protocol, "virtual resource distillation," is proposed, which allows more effective distillation of noisy resources. Here, we report its experimental implementation on a photonic quantum system for the distillation of quantum coherence (up to dimension four) and bipartite entanglement. We show the virtual distillation of the maximal superposed state of dimension four from the state of dimension two, an impossible task in conventional coherence distillation. Furthermore, we demonstrate the virtual distillation of entanglement with operations acting only on a single copy of the noisy Einstein-Podolsky-Rosen (EPR) pair and showcase the quantum teleportation task using the virtually distilled EPR pair with a significantly improved fidelity of the teleported state. These results illustrate the feasibility of the virtual resource distillation method and pave the way for accurate manipulation of quantum resources with noisy quantum hardware.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article