Your browser doesn't support javascript.
loading
Development of stemness-related signature to optimize prognosis prediction and identify XMD8-85 as a novel therapeutic compound for glioma.
Niu, Wanxiang; Yu, Huihan; Fan, Xiaoqing; Li, Shuyang; Sun, Suling; Gong, Meiting; Zhang, Siyu; Bi, Wenxu; Chen, Xueran; Fang, Zhiyou.
Afiliação
  • Niu W; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Te
  • Yu H; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, No. 81, Me
  • Fan X; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Te
  • Li S; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, No. 81, Me
  • Sun S; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Te
  • Gong M; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, No. 81, Me
  • Zhang S; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Te
  • Bi W; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Te
  • Chen X; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Te
  • Fang Z; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, No. 350, Shushan Hu Road, 230031 Hefei, Anhui, China; Science Island Branch, Graduate School of University of Science and Te
Cell Signal ; 120: 111231, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38768760
ABSTRACT
Glioma is a highly invasive and aggressive type of brain cancer with poor treatment response. Stemness-related transcription factors form a regulatory network that sustains the malignant phenotype of gliomas. We conducted an integrated analysis of stemness-related transcription factors using The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) datasets, established the characteristics of stemness-related transcription factors, including Octamer-Binding Protein 4 (OCT4), Meis Homeobox 1 (MEIS1), E2F Transcription Factor 1 (E2F1), Transcription Factor CP2 Like 1 (TFCP2L1), and RUNX Family Transcription Factor 1 (RUNX1). The characteristic of stemness-related transcription factors was identified as an independent prognostic factor for glioma patients. Patients in the high-risk group have a worse prognosis than those in the low-risk group. The glioma microenvironment in the high-risk group exhibited a more active immune status. Single-cell level analysis revealed that stem cell-like cells exhibited stronger intercellular communication than glioma cells. Meanwhile, patients in different risk stratification exhibited varying sensitivities to immunotherapy and small molecule drug therapy. XMD8-85 was more effective in the high-risk group, and its antitumor effects were validated both in vivo and in vitro. Our results indicate that this prognostic feature will assist clinicians in predicting the prognosis of glioma patients, guiding immunotherapy and personalized treatment, as well as the potential clinical application of XMD8-85 in glioma treatment, and helping to develop effective treatment strategies.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Neoplásicas / Neoplasias Encefálicas / Glioma Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Células-Tronco Neoplásicas / Neoplasias Encefálicas / Glioma Limite: Animals / Female / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article