Your browser doesn't support javascript.
loading
Fetal brain response to maternal inflammation requires microglia.
Ostrem, Bridget Elaine LaMonica; Domínguez-Iturza, Nuria; Stogsdill, Jeffrey A; Faits, Tyler; Kim, Kwanho; Levin, Joshua Z; Arlotta, Paola.
Afiliação
  • Ostrem BEL; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
  • Domínguez-Iturza N; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA.
  • Stogsdill JA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
  • Faits T; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • Kim K; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
  • Levin JZ; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
  • Arlotta P; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
Development ; 151(10)2024 05 15.
Article em En | MEDLINE | ID: mdl-38775708
ABSTRACT
In utero infection and maternal inflammation can adversely impact fetal brain development. Maternal systemic illness, even in the absence of direct fetal brain infection, is associated with an increased risk of neuropsychiatric disorders in affected offspring. The cell types mediating the fetal brain response to maternal inflammation are largely unknown, hindering the development of novel treatment strategies. Here, we show that microglia, the resident phagocytes of the brain, highly express receptors for relevant pathogens and cytokines throughout embryonic development. Using a rodent maternal immune activation (MIA) model in which polyinosinicpolycytidylic acid is injected into pregnant mice, we demonstrate long-lasting transcriptional changes in fetal microglia that persist into postnatal life. We find that MIA induces widespread gene expression changes in neuronal and non-neuronal cells; importantly, these responses are abolished by selective genetic deletion of microglia, indicating that microglia are required for the transcriptional response of other cortical cell types to MIA. These findings demonstrate that microglia play a crucial durable role in the fetal response to maternal inflammation, and should be explored as potential therapeutic cell targets.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Poli I-C / Microglia / Inflamação Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Encéfalo / Poli I-C / Microglia / Inflamação Limite: Animals / Pregnancy Idioma: En Ano de publicação: 2024 Tipo de documento: Article