Your browser doesn't support javascript.
loading
Convergence and molecular evolution of floral fragrance after independent transitions to self-fertilization.
Wozniak, Natalia Joanna; Sartori, Kevin; Kappel, Christian; Tran, Thi Chi; Zhao, Lihua; Erban, Alexander; Gallinger, Jannicke; Fehrle, Ines; Jantzen, Friederike; Orsucci, Marion; Ninkovic, Velemir; Rosa, Stefanie; Lenhard, Michael; Kopka, Joachim; Sicard, Adrien.
Afiliação
  • Wozniak NJ; Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
  • Sartori K; Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden.
  • Kappel C; Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
  • Tran TC; Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
  • Zhao L; Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden.
  • Erban A; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Gallinger J; Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
  • Fehrle I; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Jantzen F; Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
  • Orsucci M; Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden.
  • Ninkovic V; Department of Ecology, Swedish University of Agricultural Sciences, 750 07 Uppsala, Sweden.
  • Rosa S; Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden.
  • Lenhard M; Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam-Golm, Germany.
  • Kopka J; Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Sicard A; Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter, 75007 Uppsala, Sweden. Electronic address: adrien.sicard@slu.se.
Curr Biol ; 34(12): 2702-2711.e6, 2024 Jun 17.
Article em En | MEDLINE | ID: mdl-38776901
ABSTRACT
Studying the independent evolution of similar traits provides valuable insights into the ecological and genetic factors driving phenotypic evolution.1 The transition from outcrossing to self-fertilization is common in plant evolution2 and is often associated with a reduction in floral attractive features such as display size, chemical signals, and pollinator rewards.3 These changes are believed to result from the reallocation of the resources used for building attractive flowers, as the need to attract pollinators decreases.2,3 We investigated the similarities in the evolution of flower fragrance following independent transitions to self-fertilization in Capsella.4,5,6,7,8,9 We identified several compounds that exhibited similar changes in different selfer lineages, such that the flower scent composition reflects mating systems rather than evolutionary history within this genus. We further demonstrate that the repeated loss of ß-ocimene emission, one of the compounds most strongly affected by these transitions, was caused by mutations in different genes. In one of the Capsella selfing lineages, the loss of its emission was associated with a mutation altering subcellular localization of the ortholog of TERPENE SYNTHASE 2. This mutation appears to have been fixed early after the transition to selfing through the capture of variants segregating in the ancestral outcrossing population. The large extent of convergence in the independent evolution of flower scent, together with the evolutionary history and molecular consequences of a causal mutation, suggests that the emission of specific volatiles evolved as a response to changes in ecological pressures rather than resource limitation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Evolução Molecular / Flores / Autofertilização / Odorantes Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Evolução Molecular / Flores / Autofertilização / Odorantes Idioma: En Ano de publicação: 2024 Tipo de documento: Article