Your browser doesn't support javascript.
loading
Artificial Intelligence Uncertainty Quantification in Radiotherapy Applications - A Scoping Review.
Wahid, Kareem A; Kaffey, Zaphanlene Y; Farris, David P; Humbert-Vidan, Laia; Moreno, Amy C; Rasmussen, Mathis; Ren, Jintao; Naser, Mohamed A; Netherton, Tucker J; Korreman, Stine; Balakrishnan, Guha; Fuller, Clifton D; Fuentes, David; Dohopolski, Michael J.
Afiliação
  • Wahid KA; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Kaffey ZY; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Farris DP; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Humbert-Vidan L; Research Medical Library, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Moreno AC; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Rasmussen M; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Ren J; Department of Oncology, Aarhus University Hospital, Denmark.
  • Naser MA; Department of Oncology, Aarhus University Hospital, Denmark.
  • Netherton TJ; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Korreman S; Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
  • Balakrishnan G; Department of Oncology, Aarhus University Hospital, Denmark.
  • Fuller CD; Rice University, Houston, TX, USA.
  • Fuentes D; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
  • Dohopolski MJ; Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
medRxiv ; 2024 May 13.
Article em En | MEDLINE | ID: mdl-38798581
ABSTRACT
Background/

purpose:

The use of artificial intelligence (AI) in radiotherapy (RT) is expanding rapidly. However, there exists a notable lack of clinician trust in AI models, underscoring the need for effective uncertainty quantification (UQ) methods. The purpose of this study was to scope existing literature related to UQ in RT, identify areas of improvement, and determine future directions.

Methods:

We followed the PRISMA-ScR scoping review reporting guidelines. We utilized the population (human cancer patients), concept (utilization of AI UQ), context (radiotherapy applications) framework to structure our search and screening process. We conducted a systematic search spanning seven databases, supplemented by manual curation, up to January 2024. Our search yielded a total of 8980 articles for initial review. Manuscript screening and data extraction was performed in Covidence. Data extraction categories included general study characteristics, RT characteristics, AI characteristics, and UQ characteristics.

Results:

We identified 56 articles published from 2015-2024. 10 domains of RT applications were represented; most studies evaluated auto-contouring (50%), followed by image-synthesis (13%), and multiple applications simultaneously (11%). 12 disease sites were represented, with head and neck cancer being the most common disease site independent of application space (32%). Imaging data was used in 91% of studies, while only 13% incorporated RT dose information. Most studies focused on failure detection as the main application of UQ (60%), with Monte Carlo dropout being the most commonly implemented UQ method (32%) followed by ensembling (16%). 55% of studies did not share code or datasets.

Conclusion:

Our review revealed a lack of diversity in UQ for RT applications beyond auto-contouring. Moreover, there was a clear need to study additional UQ methods, such as conformal prediction. Our results may incentivize the development of guidelines for reporting and implementation of UQ in RT.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article