Your browser doesn't support javascript.
loading
Sympathetic hyperinnervation drives abdominal aortic aneurysm development by promoting vascular smooth muscle cell phenotypic switching.
Tang, Zhenquan; Xie, Jingfang; Jin, Ming; Wei, Guoquan; Fu, Ziwei; Luo, Xiajing; Li, Chuling; Jia, Xiaoqian; Zheng, Hao; Zhong, Lintao; Li, Xinzhong; Wang, Junfen; Chen, Guojun; Chen, Yanmei; Liao, Wangjun; Liao, Yulin; Bin, Jianping; Huang, Senlin.
Afiliação
  • Tang Z; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Xie J; Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China.
  • Jin M; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Wei G; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Fu Z; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Luo X; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Li C; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Jia X; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Zheng H; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Zhong L; Department of Cardiology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China.
  • Li X; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Wang J; Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
  • Chen G; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Chen Y; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Liao W; Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China.
  • Liao Y; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China.
  • Bin J; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China. Electronic address: jianpingbin@hotmail.com.
  • Huang S; Department of Cardiology, State Key Laboratory of Organ Failure Research, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China; Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, 510515 Guangzhou, China. Electronic address: huangsenlin11@126.com.
J Adv Res ; 2024 May 29.
Article em En | MEDLINE | ID: mdl-38821358
ABSTRACT

INTRODUCTION:

Sympathetic hyperinnervation plays an important role in modulating the vascular smooth muscle cell (VSMC) phenotype and vascular diseases, but its role in abdominal aortic aneurysm (AAA) is still unknown.

OBJECTIVES:

This study aimed to investigate the role of sympathetic hyperinnervation in promoting AAA development and the underlying mechanism involved.

METHODS:

Western blotting and immunochemical staining were used to detect sympathetic hyperinnervation. We performed sympathetic denervation through coeliac ganglionectomy (CGX) and 6-OHDA administration to understand the role of sympathetic hyperinnervation in AAA and investigated the underlying mechanisms through transcriptome and functional studies. Sema4D knockout (Sema4D-/-) mice were utilized to determine the involvement of Sema4D in inducing sympathetic hyperinnervation and AAA development.

RESULTS:

We observed sympathetic hyperinnervation, the most important form of sympathetic neural remodeling, in both mouse AAA models and AAA patients. Elimination of sympathetic hyperinnervation by CGX or 6-OHDA significantly inhibited AAA development and progression. We further revealed that sympathetic hyperinnervation promoted VSMC phenotypic switching in AAA by releasing extracellular ATP (eATP) and activating eATP-P2rx4-p38 signaling. Moreover, single-cell RNA sequencing revealed that Sema4D secreted by osteoclast-like cells induces sympathetic nerve diffusion and hyperinnervation through binding to Plxnb1. We consistently observed that AAA progression was significantly ameliorated in Sema4D-deficient mice.

CONCLUSIONS:

Sympathetic hyperinnervation driven by osteoclast-like cell-derived Sema4D promotes VSMC phenotypic switching and accelerates pathological aneurysm progression by activating the eATP/P2rx4/p38 pathway. Inhibition of sympathetic hyperinnervation emerges as a potential novel therapeutic strategy for preventing and treating AAA.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article