Your browser doesn't support javascript.
loading
Ir Nanoparticles Supported on Oxygen-Deficient Vanadium Oxides Prepared by a Polyoxovanadate Precursor for Enhanced Electrocatalytic Hydrogen Evolution.
Zhan, Taozhu; Lu, Jiaqiang; Chen, Lihong; Ma, Chunhui; Zhao, Yanchao; Wang, Xingyue; Wang, Jiani; Ling, Qian; Xiao, Zicheng; Wu, Pingfan.
Afiliação
  • Zhan T; Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China.
  • Lu J; Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China.
  • Chen L; Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China.
  • Ma C; Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China.
  • Zhao Y; Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China.
  • Wang X; Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China.
  • Wang J; Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China.
  • Ling Q; Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China.
  • Xiao Z; Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China.
  • Wu P; Institute of POM-based Materials, New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei 430068, P. R. China.
Langmuir ; 40(26): 13496-13504, 2024 Jul 02.
Article em En | MEDLINE | ID: mdl-38875122
ABSTRACT
Developing highly active electrocatalysts is crucial for the application of electrocatalytic water splitting. In this study, we prepared vanadium oxide-graphene carbon nanocomposites (VxOy/C) with abundant defects using a carbon- and oxygen-rich hexavanadate derivative Na2[V6O7{(OCH2)3CCH3}4] as a precursor without the addition of an extra carbon source. Subsequently, the VxOy/C was used as a catalyst support to load a small amount of Ir, forming the Ir/VxOy/C nanoelectrocatalyst. This catalyst exhibited low hydrogen evolution overpotentials of only 18.90 and 13.46 mV at a working current density of 10 mA cm-2 in 1.0 M KOH and 0.5 M H2SO4 electrolyte systems, outperforming the commercial Pt/C catalysts. Additionally, the catalyst showed excellent chemical stability and long-term durability. This work provides a new strategy for the design and synthesis of highly active electrocatalysts for water splitting.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article