Your browser doesn't support javascript.
loading
An In Silico Analysis of Genetic Variants and Structural Modeling of the Human Frataxin Protein in Friedreich's Ataxia.
Da Conceição, Loiane Mendonça Abrantes; Cabral, Lucio Mendes; Pereira, Gabriel Rodrigues Coutinho; De Mesquita, Joelma Freire.
Afiliação
  • Da Conceição LMA; Laboratory of Bioinformatics and Computational Biology, Federal University of the State of Rio de Janeiro (UNIRIO), Avenida Pasteur, 296, Urca, Rio de Janeiro 22290-250, Brazil.
  • Cabral LM; Pharmaceutical Industrial Technology Laboratory, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-590, Brazil.
  • Pereira GRC; Pharmaceutical Industrial Technology Laboratory, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-590, Brazil.
  • De Mesquita JF; Laboratory of Molecular Modeling & QSAR, Federal University of Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, Cidade Universitária, Rio de Janeiro 21941-590, Brazil.
Int J Mol Sci ; 25(11)2024 May 26.
Article em En | MEDLINE | ID: mdl-38891993
ABSTRACT
Friedreich's Ataxia (FRDA) stands out as the most prevalent form of hereditary ataxias, marked by progressive movement ataxia, loss of vibratory sensitivity, and skeletal deformities, severely affecting daily functioning. To date, the only medication available for treating FRDA is Omaveloxolone (Skyclarys®), recently approved by the FDA. Missense mutations within the human frataxin (FXN) gene, responsible for intracellular iron homeostasis regulation, are linked to FRDA development. These mutations induce FXN dysfunction, fostering mitochondrial iron accumulation and heightened oxidative stress, ultimately triggering neuronal cell death pathways. This study amalgamated 226 FXN genetic variants from the literature and database searches, with only 18 previously characterized. Predictive analyses revealed a notable prevalence of detrimental and destabilizing predictions for FXN mutations, predominantly impacting conserved residues crucial for protein function. Additionally, an accurate, comprehensive three-dimensional model of human FXN was constructed, serving as the basis for generating genetic variants I154F and W155R. These variants, selected for their severe clinical implications, underwent molecular dynamics (MD) simulations, unveiling flexibility and essential dynamic alterations in their N-terminal segments, encompassing FXN42, FXN56, and FXN78 domains pivotal for protein maturation. Thus, our findings indicate potential interaction profile disturbances in the FXN42, FXN56, and FXN78 domains induced by I154F and W155R mutations, aligning with the existing literature.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ataxia de Friedreich / Proteínas de Ligação ao Ferro / Simulação de Dinâmica Molecular / Frataxina Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Ataxia de Friedreich / Proteínas de Ligação ao Ferro / Simulação de Dinâmica Molecular / Frataxina Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article