Your browser doesn't support javascript.
loading
GRA47 is important for the morphology and permeability of the parasitophorous vacuole in Toxoplasma gondii.
Zheng, Xiao-Nan; Li, Ting-Ting; Elsheikha, Hany M; Wang, Meng; Sun, Li-Xiu; Wu, Xiao-Jing; Fu, Bao-Quan; Zhu, Xing-Quan; Wang, Jin-Lei.
Afiliação
  • Zheng XN; State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases,
  • Li TT; State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Ch
  • Elsheikha HM; Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
  • Wang M; State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Ch
  • Sun LX; State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Ch
  • Wu XJ; State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Laboratory of Parasitic Diseases,
  • Fu BQ; State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Ch
  • Zhu XQ; Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi Province 030801, People's Republic of China. Electronic address: xingquanzhu1@hotmail.com.
  • Wang JL; State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730046, People's Republic of China; Institute of Urban Agriculture, Ch
Int J Parasitol ; 2024 Jun 25.
Article em En | MEDLINE | ID: mdl-38936501
ABSTRACT
Establishing an intact intracellular parasitophorous vacuole (PV) that enables efficient nutrient uptake and protein trafficking is essential for the survival and proliferation of Toxoplasma gondii. Although the PV membrane (PVM)-localized dense granule protein 17 (GRA17) and GRA23 mediate the permeability of the PVM to small molecules, including nutrient uptake and excretion of metabolic by-products, the molecular mechanism by which T. gondii acquires nutrients remains unclear. In this study, we showed that the secreted protein GRA47 contributed to normal PV morphology, PVM permeability to small molecules, growth, and virulence in T. gondii. Co-immunoprecipitation analysis demonstrated potential interaction of GRA47 with GRA72, and the loss of GRA72 affected PV morphology, parasite growth and infectivity. To investigate the biological relationship among GRA47, GRA72, GRA17 and GRA23, attempts were made to construct strains with double gene deletion and overexpressing strains. Only Δgra23Δgra72 was successfully constructed. This strain exhibited a significant increase in the proportion of aberrant PVs compared with the Δgra23 strain. Overexpressing one of the three related GRAs partially rescued PVs with aberrant morphology in Δgra47, Δgra72 and Δgra17, while the expression of the Plasmodium falciparum PVM protein PfExp2, an ortholog of GRA17 and GRA23, fully rescued the PV morphological defect in all three Δgra strains. These results suggest that these GRA proteins may not be functionally redundant but rather work in different ways to regulate nutrient acquisition. These findings highlight the versatility of the nutrient uptake mechanisms in T. gondii, which may contribute to the parasite's remarkable ability to grow in different cellular niches in a very broad range of hosts.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article